The curvature of a discrete space curve can be calculated using 3 successive points can be calculated using the Menger curvature (see https://en.wikipedia.org/wiki/Menger_curvature and Calculate curvature for 3 Points (x,y)).
My question is: is there a similar explicit formula for the torsion (https://en.wikipedia.org/wiki/Torsion_of_a_curve or ) using four 4 successive points?
If not an explicit formula, does someone know of an algorithm/package for calculating it? I work in python, but anything will do.
I can imagine the basic steps. Two successive vectors define a plane, and thus 3 successive vectors define two planes. The change in angle between the plane normals is proportional to the torsion. But I need an exact formula, with the calculated torsion having the proper dimension of 1/length^2.