I am looking for a batch loader for a glue job to load into RDS using a PySpark script witht he DataFormatWriter. I have this working for RedShift as follows:
df.write \
.format("com.databricks.spark.redshift") \
.option("url", jdbcconf.get("url") + '/' + DATABASE + '?user=' + jdbcconf.get('user') + '&password=' + jdbcconf.get('password')) \
.option("dbtable", TABLE_NAME) \
.option("tempdir", args["TempDir"]) \
.option("forward_spark_s3_credentials", "true") \
.mode("overwrite") \
.save()
Where df
is defined above to read in a file. What is the best approach I could take to do this in RDS instead of in REDSHIFT?