tl;dr
Determining dates requires a time zone.
Use only java.time classes, never legacy java.util.Date
, Calendar
, java.sql.Date
, java.sql.Timestamp
, etc.
myResultSet.getObject(
… ,
Instant.class
) // Retrieve a `java.time.Instant` from a column of type akin to the SQL-standard `TIMESTAMP WITH TIME ZONE`.
.atZone(
ZoneId.of( "Pacific/Auckland" )
)
.toLocalDate()
.isEqual(
LocalDate.now( ZoneId.of( "Pacific/Auckland" ) )
)
Avoid legacy date-time classes
The terrible Date
and Calendar
legacy classes were supplanted years ago by the modern java.time classes.
Time zones
Your Question ignores the crucial issue of time zone. For any given moment, the date and time-of-day both vary around the globe by time zone. You cannot talk about dates without talking about time zone. For example, a few minutes after midnight in Paris France is a new day while still “yesterday” in Montréal Québec.
If no time zone is specified, the JVM implicitly applies its current default time zone. That default may change at any moment during runtime(!), so your results may vary. Better to specify your [desired/expected time zone][2] explicitly as an argument.
Specify a proper time zone name in the format of continent/region
, such as America/Montreal
, Africa/Casablanca
, or Pacific/Auckland
. Never use the 3-4 letter abbreviation such as EST
or IST
as they are not true time zones, not standardized, and not even unique(!).
ZoneId z = ZoneId.of( "America/Montreal" ) ;
LocalDate today = LocalDate.now( z ) ;
If you want to use the JVM’s current default time zone, ask for it and pass as an argument. If omitted, the JVM’s current default is applied implicitly. Better to be explicit, as the default may be changed at any moment during runtime by any code in any thread of any app within the JVM.
ZoneId z = ZoneId.systemDefault() ; // Get JVM’s current default time zone.
Or specify a date. You may set the month by a number, with sane numbering 1-12 for January-December.
LocalDate ld = LocalDate.of( 1986 , 2 , 23 ) ; // Years use sane direct numbering (1986 means year 1986). Months use sane numbering, 1-12 for January-December.
Or, better, use the Month
enum objects pre-defined, one for each month of the year. Tip: Use these Month
objects throughout your codebase rather than a mere integer number to make your code more self-documenting, ensure valid values, and provide type-safety.
LocalDate ld = LocalDate.of( 1986 , Month.FEBRUARY , 23 ) ;
Never assume 00:00:00
Also, do not assume the day starts at 00:00:00. Because of anomalies such as Daylight Saving Time (DST), the day may start at another time, such as 01:00:00. Let java.time determine the first moment of the day. Specify a time zone to yield a ZonedDateTime
object representing a specific moment.
ZonedDateTime startOfToday = LocalDate.now( z ).atStartOfDay( z ) ;
ZonedDateTime startOfYesterday = startOfToday.toLocalDate().minusDays( 1 ).atStartOfDay( z ) ;
For querying database, it is often best to use UTC values. To adjust from our time zone to UTC, simply extract a Instant
.
Instant start = startOfToday.toInstant() ;
Instant stop = startOfYesterday.toInstant() ;
Ready to query database. Using Half-Open approach here where beginning is inclusive while ending is exclusive. So, do not use SQL BETWEEN
.
// SQL for SELECT WHERE when_field >= ? AND when_field < ?
myPreparedStatement.setObject( 1 , start ) ;
myPreparedStatement.setObject( 2 , stop ) ;
Comparing dates
If you just want to check the age of a retrieved moment, retrieve an Instant.
Instant instant = myResultSet.getObject( … , Instant.class ) ;
Apply a time zone to get a ZonedDateTime
. Then extract the date-only value.
ZonedDateTime zdt = instant.atZone( z ) ;
LocalDate ld = zdt.toLocalDate() ; // Extract the date-only value.
Compare to today's date.
LocalDate yesterday = LocalDate.now( z ).minusDays( 1 ) ; // Subtract one day from today to get yesterday.
Boolean retrievedDateIsYesterday = ld.isEqual( yesterday ) ;
If you work much with spans-of-time, see the Interval
and LocalDateRange
classes in the ThreeTen-Extra project linked below.
About java.time
The java.time framework is built into Java 8 and later. These classes supplant the troublesome old legacy date-time classes such as java.util.Date
, Calendar
, & SimpleDateFormat
.
The Joda-Time project, now in maintenance mode, advises migration to the java.time classes.
To learn more, see the Oracle Tutorial. And search Stack Overflow for many examples and explanations. Specification is JSR 310.
You may exchange java.time objects directly with your database. Use a JDBC driver compliant with JDBC 4.2 or later. No need for strings, no need for java.sql.*
classes.
Where to obtain the java.time classes?
The ThreeTen-Extra project extends java.time with additional classes. This project is a proving ground for possible future additions to java.time. You may find some useful classes here such as Interval
, YearWeek
, YearQuarter
, and more.