I am trying to fit a for Loop in R in order to run correlations for multiple subsets in a data frame and then store the results in a vector.
What I have in this loop is a data frame with 2 columns, x and y, and 30 rows of different continuous measurement values in each column. The process should be repeated 100 times. The data can be invented. What I need, is to compute the Spearman's rho for the first five rows (between x and y) and then for increasing subsets (e.g., the sixth first rows, the sevenths first rows etc.). Then, I'd need to store the rho results in a vector that I can further use.
What I had in mind (but does not work):
sortvector <- 1:(30)
for (i in 1:100)
{
sortvector <- sample(sortvector, replace = F)
xtemp <- x[sortvector]
rho <- cor.test(xtemp,y, method="spearman")$estimate
}
The problem is that the code gives me one value of rho for the whole dataframe, but I need it for increments of subsets. How can I get rho for subsets of increasing values in a for-loop? And how can i store the coefficients in a vector that i can use afterwards?
Any help would be much appreciated, thanks.
Cheers