meta-classifier is the one that takes in all the predicted values of your models. As in your example you have three classifiers clf1, clf2, clf3 let's say clf1 is naive bayes, clf2 is random-forest, clf3 is svm. Now for every data point x_i in your dataset your all three models will run h_1(x_i), h_2(x_i), h_3(x_i) where h_1,h_2,h_3 corresponds to the function of clf1, clf2, clf3. Now these three models will give three predicted y_i values and all these will run in parallel. Now with these predicted values a model is trained which is known as meta- classifier and that is logistic regression in your case.
So for a new query point (x_q) it will calculated as h^'(h_1(x_q),h_2(x_q),h_3(x_q)) where h^'(h dash) is function that computes y_q.
The advantage of meta-classifier or ensemble models is that suppose your clf1 gives an accuracy of 90%, clf2 gives an accuracy of 92%, clf3 gives an accuracy of 93%. So the end model will give an accuracy that will be greater than 93% which is trained using meta classifier. These stacking classifer are used extensively in kaggle completions.