Here is the set-up:
Clear[freeVertices];
freeVertices[edgeList_List] := Select[Tally[Flatten[edgeList]], #[[2]] < 2 &][[All, 1]];
ClearAll[setNew, componentsBFLS];
setNew[x_, x_] := Null;
setNew[lhs_, rhs_] := lhs := Function[Null, (#1 := #0[##]); #2, HoldFirst][lhs, rhs];
componentsBFLS[lst_List] :=
Module[{f}, setNew @@@ Map[f, lst, {2}]; GatherBy[Tally[Flatten@lst][[All, 1]], f]];
Here is the start:
In[13]:= start = Partition[Range[12], 2]
Out[13]= {{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}, {11, 12}}
Here are the steps:
In[51]:= steps =
NestWhileList[Append[#, RandomSample[freeVertices[#], 2]] &,
start, freeVertices[#] =!= {} &]
Out[51]= {{{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}, {11, 12}}, {{1,
2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}, {11, 12}, {5, 1}}, {{1,
2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}, {11, 12}, {5, 1}, {3,
4}}, {{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}, {11, 12}, {5,
1}, {3, 4}, {7, 11}}, {{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9,
10}, {11, 12}, {5, 1}, {3, 4}, {7, 11}, {8, 2}}, {{1, 2}, {3,
4}, {5, 6}, {7, 8}, {9, 10}, {11, 12}, {5, 1}, {3, 4}, {7, 11}, {8,
2}, {6, 10}}, {{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}, {11,
12}, {5, 1}, {3, 4}, {7, 11}, {8, 2}, {6, 10}, {9, 12}}}
Here are the connected components (cycles etc), which you can study:
In[52]:= componentsBFLS /@ steps
Out[52]= {{{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}, {11, 12}}, {{1, 2,
5, 6}, {3, 4}, {7, 8}, {9, 10}, {11, 12}}, {{1, 2, 5, 6}, {3,
4}, {7, 8}, {9, 10}, {11, 12}}, {{1, 2, 5, 6}, {3, 4}, {7, 8, 11,
12}, {9, 10}}, {{1, 2, 5, 6, 7, 8, 11, 12}, {3, 4}, {9, 10}}, {{1,
2, 5, 6, 7, 8, 9, 10, 11, 12}, {3, 4}}, {{1, 2, 5, 6, 7, 8, 9, 10,
11, 12}, {3, 4}}}
What happens is that we treat all pairs as edges in one big graph, and add an edge randomly if both vertices have at most one connection to some other edge at the moment. At some point, the process stops. Then, we map the componentsBFLS function onto resulting graphs (representing the steps of the simulation), to get the connected components of the graphs (steps). You could use other metrics as well, of course, and write more functions which will analyze the steps for loops etc. Hope this will get you started.