I have a dataframe of latitudes, longitudes, start years and end years. I want mean precipitation for each location for that period.
Right now, I can get this for one location at a time, but I want to automate the following for multiple locations:
Here are some prerequisites:
#library(xts)
#library(rnoaa)
#options(noaakey = "...") # https://ropensci.org/blog/2014/03/13/rnoaa/ says how to get a API key
#station_data <- ghcnd_stations() # Takes a while to run
statenv <- new.env()
lat_lon_df<-structure(list(lat = c(41.1620277777778, 44.483333, 44.066667
), long = c(-96.4115, -92.533333, -93.5), yrmin = c(2001L, 1983L,
1982L), yrmax = c(2010L, 1990L, 1992L), id = c("ithaca", "haycreek",
"waseca")), class = "data.frame", row.names = c(1389L, 1395L,
1403L))
And here is the meat.
ll_df<-lat_lon_df[1,]
nearby_station<-meteo_nearby_stations(lat_lon_df = ll_df,
lat_colname = "lat", lon_colname = "long",
station_data = station_data, radius = 50, year_min=ll_df[1,"yrmin"],
year_max=ll_df[1,"yrmax"],limit=1, var="PRCP")
nearby_station<-meteo_nearby_stations(lat_lon_df = ll_df,lat_colname = "lat", lon_colname = "long",
station_data = station_data, radius = 50, year_min=ll_df[1,"yrmin"],
year_max=ll_df[1,"yrmin"],limit=1, var="PRCP")
e <- lapply(nearby_station,function(x) meteo_pull_monitors(x$id[1])) #get actual data based on monitor id's
ll<-xts(e[[1]]$prcp,order.by=e[[1]]$date)
x<-paste0(ll_df[1,"yrmin"],"/",ll_df[1,"yrmax"])
mean(xts::apply.yearly(na.omit(ll[x]),sum))/10 #divide by 10, put in mm
This returns 776.23. End result should be a dataframe that now has a new column "precip" like this:
lat long yrmin yrmax id precip
41.16203 -96.41150 2001 2010 ithaca 776.23
44.48333 -92.53333 1983 1990 haycreek 829.65
44.06667 -93.50000 1982 1992 waseca 894.62
There has to be a way to get this to
simply repeat by row of lat_long_df
, i.e for lat_lon_df[1,]
, then lat_lon_df[2,]
, and finally lat_lon_df[3,]
.