0

Trying to do some regression on one continuous predictor and one factor predictor.

The code below works when using abline (but gets a: Warning message: In abline(models[[i]], col = labelColors[i], lty = 2:4) : only using the first two of 3 regression coefficients)), and draws a bunch of lines for the logit and loglog models.

How can I draw this surface or fake it somehow?

f<-function() {
    set.seed(123)
    colors<-c("red","green")
    labelColors<-c("black","cyan","magenta")
    x<-runif(100,0,1)
    f<-round(runif(100,0,.75))
    noise<-rnorm(length(x),0,.5)
    y<-(1+3*x+f/2+noise)/6
    plot(x,y,xlab="",ylab="")
    title("test")
    plot(x[f==0],y[f==0],ylim=c(0,1),col=colors[1])
    points(x[f==1],y[f==1], ylim=c(0.,1.),col=colors[2])
    title("test",sub="factor")
    m<-lm(y~x+factor(f),na.action=na.omit)
    logit<-betareg(y~x+factor(f),na.action=na.omit)
    loglog<-betareg(y~x+factor(f),na.action=na.omit,link="loglog")
    models<-list(m,logit,loglog)
    for(i in 1:length(models)) {  
        if(is(models[[i]],"lm")) {
            if(F) lines(x,predict(models[[i]]),col=labelColors[i],lty=2:4)
            else abline(models[[i]],col=labelColors[i],lty=2:4)
        }
        else lines(x,predict(models[[i]]),col=labelColors[i],lty=2:4)
    }
    for(i in 1:length(models))
        print(models[[i]])
    }
f()
Ray Tayek
  • 9,841
  • 8
  • 50
  • 90

0 Answers0