Data:
df = pd.DataFrame({'date':['2017-01-01T00:00:00.000000000','2017-01-02T00:00:00.000000000','2017-01-03T00:00:00.000000000']})
You can convert the whole column with pd.to_datetime
.
>>> pd.to_datetime(df['date'])
0 2017-01-01
1 2017-01-02
2 2017-01-03
Name: date, dtype: datetime64[ns]
>>> df['date'][0]
Timestamp('2017-01-01 00:00:00')
If you have an individual cell, you can also use pd.to_datetime
>>> pd.to_datetime('2017-01-01T00:00:00.000000000')
Timestamp('2017-01-01 00:00:00')
And then strftime
if needed:
>>> pd.to_datetime('2017-01-01T00:00:00.000000000').strftime('%Y/%m/%d')
'2017/01/01'
But converting individual cell is faster with pd.Timestamp
:
>>> %timeit pd.Timestamp('2017-01-01T00:00:00.000000000')
2.18 µs ± 8.56 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
>>> %timeit pd.to_datetime('2017-01-01T00:00:00.000000000')
54 µs ± 560 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)