My current dataframe looks like this:
df0:
reqs code hostname file_path filename extension date
51723330 404 services.compay.com /folderA/folderB/ JPG 2018-09-13
50927945 404 services.company2.com /folderA/folderB/ GIF 2018-09-15
50781228 404 services.companyB.com /folderA/folderB/ JPG 2018-09-14
50554338 404 services.companyC.com /folderA/folderB/...
What I would like to do is end up with a table like this where there is a column that is the % of requests (%reqs) based on the reqs count
reqs code hostname file_path filename extension date %reqs
51723330 404 services.compay.com /folderA/folderB/ JPG 2018-09-13 12%
50927945 404 services.company2.com /folderA/folderB/ GIF 2018-09-15 10%
50781228 404 services.companyB.com /folderA/folderB/ JPG 2018-09-14 11%
50554338 404 services.companyC.com /folderA/folderB/... 10%
...
..
.
I tried to follow this and got a little lost: Pandas percentage of total with groupby
df1 = df0.groupby(['code','hostname','file_path','filename','file_extension','date']).agg({'reqs': 'sum'})
df2 = df1.groupby(level=0).apply(lambda x: 100* x/float(x.sum()))
Doesnt look like % were represented also I think I need a step where I once I get the % I need to merge it back in to df0 This produced some strange results.