I have xy data, where y is a continuous response and x is a categorical variable:
set.seed(1)
df <- data.frame(y = rnorm(27), group = c(rep("A",9),rep("B",9),rep("C",9)), stringsAsFactors = F)
I would like to fit the linear model: y ~ group
to it, in which each of the levels in df$group
is contrasted with the mean.
I thought that using Deviation Coding does that:
lm(y ~ group,contrasts = "contr.sum",data=df)
But it skips contrasting group A with the mean:
> summary(lm(y ~ group,contrasts = "contr.sum",data=df))
Call:
lm(formula = y ~ group, data = df, contrasts = "contr.sum")
Residuals:
Min 1Q Median 3Q Max
-1.6445 -0.6946 -0.1304 0.6593 1.9165
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.2651 0.3457 -0.767 0.451
groupB 0.2057 0.4888 0.421 0.678
groupC 0.3985 0.4888 0.815 0.423
Residual standard error: 1.037 on 24 degrees of freedom
Multiple R-squared: 0.02695, Adjusted R-squared: -0.05414
F-statistic: 0.3324 on 2 and 24 DF, p-value: 0.7205
Is there any function that builds a model matrix
to get each of the levels of df$group
contrasted with the mean in the summary?
All I can think of is manually adding a "mean" level to df$group
and setting it is as baseline with Dummy Coding:
df <- df %>% rbind(data.frame(y = mean(df$y), group ="mean"))
df$group <- factor(df$group, levels = c("mean","A","B","C"))
summary(lm(y ~ group,contrasts = "contr.treatment",data=df))
Call:
lm(formula = y ~ group, data = df, contrasts = "contr.treatment")
Residuals:
Min 1Q Median 3Q Max
-2.30003 -0.34864 0.07575 0.56896 1.42645
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.14832 0.95210 0.156 0.878
groupA 0.03250 1.00360 0.032 0.974
groupB -0.06300 1.00360 -0.063 0.950
groupC 0.03049 1.00360 0.030 0.976
Residual standard error: 0.9521 on 24 degrees of freedom
Multiple R-squared: 0.002457, Adjusted R-squared: -0.1222
F-statistic: 0.01971 on 3 and 24 DF, p-value: 0.9961
Similarly, suppose I have data with two categorical variables:
set.seed(1)
df <- data.frame(y = rnorm(18),
group = c(rep("A",9),rep("B",9)),
class = as.character(rep(c(rep(1,3),rep(2,3),rep(3,3)),2)))
and I would like to estimate the interaction effect per each level: (i.e., class1:groupB
, class2:groupB
, and class3:groupB
for:
lm(y ~ class*group,contrasts = c("contr.sum","contr.treatment"),data=df)
How would I obtain it?