I have a DataFrame that has dates, assets, and then price/volume data. I'm trying to pull in data from 7 days ago, but the issue is that I can't use shift() because my table has missing dates in it.
date cusip price price_7daysago
1/1/2017 a 1
1/1/2017 b 2
1/2/2017 a 1.2
1/2/2017 b 2.3
1/8/2017 a 1.1 1
1/8/2017 b 2.2 2
I've tried creating a lambda function to try to use loc and timedelta to create this shifting, but I was only able to output empty numpy arrays:
def row_delta(x, df, days, colname):
if datetime.strptime(x['recorddate'], '%Y%m%d') - timedelta(days) in [datetime.strptime(x,'%Y%m%d') for x in df['recorddate'].unique().tolist()]:
return df.loc[(df['recorddate_date'] == df['recorddate_date'] - timedelta(days)) & (df['cusip'] == x['cusip']) ,colname]
else:
return 'nothing'
I also thought of doing something similar to this in order to fill in missing dates, but my issue is that I have multiple indexes, the dates and the cusips so I can't just reindex on this.