0

I have developed a code to do online multi-class classification using the 20 news groups data-set. In order to eliminate the effect of the padded 0s of the text fed into the LSTM, I added the 'sequence_length' parameter to the dynamic_rnn passing the length of each text being processed.

After I added this attribute, the prediction (the code shown blow) gives the same prediction for all the iterations except the very 1st one.

predictions = tf.nn.softmax(logit).eval(feed_dict=feed)

Shown below are the predictions I received for the 1st, 2nd, 3rd and 4th iterations :

1st: [[0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05]]

2nd: [[0.04994956 0.04994956 0.04994956 0.04994956 0.04994956 0.04994956 0.04994956 0.04994956 0.04994956 0.04994956 0.0509586 0.04994956 0.04994956 0.04994956 0.04994956 0.04994956 0.04994956 0.04994956 0.04994956 0.04994956]]

3rd: [[0.0498649 0.0498649 0.0498649 0.05072384 0.0498649 0.0498649 0.0498649 0.0498649 0.0498649 0.0498649 0.05170782 0.0498649 0.0498649 0.0498649 0.0498649 0.0498649 0.0498649 0.0498649 0.0498649 0.0498649 ]]

4th: [[0.04974937 0.04974937 0.04974937 0.05137746 0.04974937 0.04974937 0.04974937 0.04974937 0.04974937 0.04974937 0.05234195 0.04974937 0.04974937 0.04974937 0.04974937 0.04974937 0.04974937 0.05054148 0.04974937 0.04974937]]

After the 2nd iteration the prediction doesn't change (the argmax of the prediction always comes as 10).

Question: What am I doing wrong here? Thank you in advance!

Shown below is my complete code:

from collections import Counter
import tensorflow as tf
from sklearn.datasets import fetch_20newsgroups
import matplotlib as mplt
mplt.use('agg') # Must be before importing matplotlib.pyplot or pylab!
import matplotlib.pyplot as plt
from string import punctuation
from sklearn.preprocessing import LabelBinarizer
import numpy as np
from nltk.corpus import stopwords
import nltk
nltk.download('stopwords')



def pre_process():
    newsgroups_data = fetch_20newsgroups(subset='all', remove=('headers', 'footers', 'quotes'))

    words = []
    temp_post_text = []
    print(len(newsgroups_data.data))

    for post in newsgroups_data.data:

        all_text = ''.join([text for text in post if text not in punctuation])
        all_text = all_text.split('\n')
        all_text = ''.join(all_text)
        temp_text = all_text.split(" ")

        for word in temp_text:
            if word.isalpha():
                temp_text[temp_text.index(word)] = word.lower()

        # temp_text = [word for word in temp_text if word not in stopwords.words('english')]
        temp_text = list(filter(None, temp_text))
        temp_text = ' '.join([i for i in temp_text if not i.isdigit()])
        words += temp_text.split(" ")
        temp_post_text.append(temp_text)

    # temp_post_text = list(filter(None, temp_post_text))

    dictionary = Counter(words)
    # deleting spaces
    # del dictionary[""]
    sorted_split_words = sorted(dictionary, key=dictionary.get, reverse=True)
    vocab_to_int = {c: i for i, c in enumerate(sorted_split_words,1)}

    message_ints = []
    for message in temp_post_text:
        temp_message = message.split(" ")
        message_ints.append([vocab_to_int[i] for i in temp_message])


    # maximum message length = 6577

    # message_lens = Counter([len(x) for x in message_ints])AAA

    seq_length = 6577
    num_messages = len(temp_post_text)
    features = np.zeros([num_messages, seq_length], dtype=int)
    for i, row in enumerate(message_ints):
        # print(features[i, -len(row):])
        # features[i, -len(row):] = np.array(row)[:seq_length]
        features[i, :len(row)] = np.array(row)[:seq_length]
        # print(features[i])

    lb = LabelBinarizer()
    lbl = newsgroups_data.target
    labels = np.reshape(lbl, [-1])
    labels = lb.fit_transform(labels)

    sequence_lengths = [len(msg) for msg in message_ints]
    return features, labels, len(sorted_split_words)+1, sequence_lengths


def get_batches(x, y, sql, batch_size=1):
    for ii in range(0, len(y), batch_size):
        yield x[ii:ii + batch_size], y[ii:ii + batch_size], sql[ii:ii+batch_size]


def plot(noOfWrongPred, dataPoints):
    font_size = 14
    fig = plt.figure(dpi=100,figsize=(10, 6))
    mplt.rcParams.update({'font.size': font_size})
    plt.title("Distribution of wrong predictions", fontsize=font_size)
    plt.ylabel('Error rate', fontsize=font_size)
    plt.xlabel('Number of data points', fontsize=font_size)

    plt.plot(dataPoints, noOfWrongPred, label='Prediction', color='blue', linewidth=1.8)
    # plt.legend(loc='upper right', fontsize=14)

    plt.savefig('distribution of wrong predictions.png')
    # plt.show()



def train_test():
    features, labels, n_words, sequence_length = pre_process()

    print(features.shape)
    print(labels.shape)

    # Defining Hyperparameters

    lstm_layers = 1
    batch_size = 1
    lstm_size = 200
    learning_rate = 0.01

    # --------------placeholders-------------------------------------

    # Create the graph object
    graph = tf.Graph()
    # Add nodes to the graph
    with graph.as_default():

        tf.set_random_seed(1)

        inputs_ = tf.placeholder(tf.int32, [None, None], name="inputs")
        # labels_ = tf.placeholder(dtype= tf.int32)
        labels_ = tf.placeholder(tf.float32, [None, None], name="labels")
        sql_in = tf.placeholder(tf.int32, [None], name= 'sql_in')

        # output_keep_prob is the dropout added to the RNN's outputs, the dropout will have no effect on the calculation of the subsequent states.
        keep_prob = tf.placeholder(tf.float32, name="keep_prob")

        # Size of the embedding vectors (number of units in the embedding layer)
        embed_size = 300

        # generating random values from a uniform distribution (minval included and maxval excluded)
        embedding = tf.Variable(tf.random_uniform((n_words, embed_size), -1, 1),trainable=True)
        embed = tf.nn.embedding_lookup(embedding, inputs_)

        print(embedding.shape)
        print(embed.shape)
        print(embed[0])

        # Your basic LSTM cell
        lstm =  tf.contrib.rnn.BasicLSTMCell(lstm_size)


        # Add dropout to the cell
        drop = tf.contrib.rnn.DropoutWrapper(lstm, output_keep_prob=keep_prob)

        # Stack up multiple LSTM layers, for deep learning
        cell = tf.contrib.rnn.MultiRNNCell([drop] * lstm_layers)

        # Getting an initial state of all zeros
        initial_state = cell.zero_state(batch_size, tf.float32)

        outputs, final_state = tf.nn.dynamic_rnn(cell, embed, initial_state=initial_state, sequence_length=sql_in)

        # hidden layer
        hidden = tf.layers.dense(outputs[:, -1], units=25, activation=tf.nn.relu)

        print(hidden.shape)

        logit = tf.contrib.layers.fully_connected(hidden, num_outputs=20, activation_fn=None)

        cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logit, labels=labels_))

        optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost)

        saver = tf.train.Saver()

    # ----------------------------online training-----------------------------------------

    with tf.Session(graph=graph) as sess:
        tf.set_random_seed(1)
        sess.run(tf.global_variables_initializer())
        iteration = 1
        state = sess.run(initial_state)
        wrongPred = 0
        noOfWrongPreds = []
        dataPoints = []

        for ii, (x, y, sql) in enumerate(get_batches(features, labels, sequence_length, batch_size), 1):

            feed = {inputs_: x,
                    labels_: y,
                    sql_in : sql,
                    keep_prob: 0.5,
                    initial_state: state}

            predictions = tf.nn.softmax(logit).eval(feed_dict=feed)

            print("----------------------------------------------------------")
            print("sez: ",sql)
            print("Iteration: {}".format(iteration))

            isequal = np.equal(np.argmax(predictions[0], 0), np.argmax(y[0], 0))

            print(np.argmax(predictions[0], 0))
            print(np.argmax(y[0], 0))

            if not (isequal):
                wrongPred += 1

            print("nummber of wrong preds: ",wrongPred)

            if iteration%50 == 0:
                noOfWrongPreds.append(wrongPred/iteration)
                dataPoints.append(iteration)

            loss, states, _ = sess.run([cost, final_state, optimizer], feed_dict=feed)

            print("Train loss: {:.3f}".format(loss))
            iteration += 1

        saver.save(sess, "checkpoints/sentiment.ckpt")
        errorRate = wrongPred / len(labels)
        print("ERRORS: ", wrongPred)
        print("ERROR RATE: ", errorRate)
        plot(noOfWrongPreds, dataPoints)


if __name__ == '__main__':
    train_test()
Sociopath
  • 13,068
  • 19
  • 47
  • 75
Suleka_28
  • 2,761
  • 4
  • 27
  • 43

1 Answers1

1

It seems that your model learns nothing and only do the random guessing. I have below provided few suggestions (however may not be the exact reason for the random guessing),

  1. Masking the Cost Function :

As explained here: https://danijar.com/variable-sequence-lengths-in-tensorflow/, it is a good practice to consider only the actual sequence length when you calculating the loss rather than averaging over the padded sequence length.

Following explanation is extracted from the above source :

Note that our output will still be of size batch_size x max_length x out_size, but with the last being zero vectors for sequences shorter than the maximum length. When you use the outputs at each time step, as in sequence labeling, we don’t want to consider them in our cost function. We mask out the unused frames and compute the mean error over the sequence length by dividing by the actual length. Using tf.reduce_mean() does not work here because it would devide by the maximum sequence length.

  1. stacking multiple cells :

Following code snippet stacks the same copy of the lstm cell rather than different instances,

    cell = tf.contrib.rnn.MultiRNNCell([drop] * lstm_layers)

More detail explation can be found here:Cannot stack LSTM with MultiRNNCell and dynamic_rnn

  1. Batch Size:

You are using batch size = 1, which is the stochastic gradient descent approach. Therefore, try to increase your batch size (mini batch gradient descent approach) that would be less noisy and have faster convergence properties.

  1. Try few epochs and see how the loss and the accuracy changes:

This would give you a good understanding of how your model behaves.

Hope this helps.

Nipun Wijerathne
  • 1,839
  • 11
  • 13
  • Thanks, the article helped a lot. The problem was with the output I was feeding to the hidden layer. I was taking the last output of the LSTM's output when I should have taken the RELEVANT output. – Suleka_28 Sep 21 '18 at 10:12