I have an array like this
ar = np.array([[0, 1, 0, 1, 0, 1, 0, 1],
[0, 1, 0, 0, 0, 1, 1, 1]])
I want to get
array([[0., 0.],
[1., 1.],
[0., 0.],
[1., 0.],
[0., 0.],
[1., 1.],
[0., 1.],
[1., 1.]])
If I do as below I get
ar.reshape(8,2)
array([[0, 1],
[0, 1],
[0, 1],
[0, 1],
[0, 1],
[0, 0],
[0, 1],
[1, 1]])
My decision is
npar = np.zeros((np.asarray(ar).shape[1],np.asarray(ar).shape[0]))
npar[:, 0] = ar[0]
npar[:, 1] = ar[1]
npar
array([[0., 0.],
[1., 1.],
[0., 0.],
[1., 0.],
[0., 0.],
[1., 1.],
[0., 1.],
[1., 1.]])
But is there more fast & convinient way?