In one of the previous intro to cs exams there was a question: calculate the space and time complexity of the function f1 as a function of n, assume that the time complexity of malloc(n) is O(1) and its space complexity is O(n).
int f1(int n) {
if(n < 3)
return 1;
int* arr = (int*) malloc(sizeof(int) * n);
f1(f1(n – 3));
free(arr);
return n;
}
The official solution is: time complexity: O(2^(n/3)), space complexity: O(n^2)
I tried to solve it but i didn't know how until i saw a note in my notebook that said: since the function returns n then we can treat f(f(n-3)) as f(n-3)+f(n-3) or as 2f(n-3). In this case the question becomes very similar to this one: Space complexity of recursive function
I tried solving it this way and i got the correct answer.
For the time complexity:
T(n)=2T(n-3)+1 , T(0)=1
T(n-3)=2T(n-3*2)+1
T(n)=2*2T(n-3*2)+2+1
T(n-3*2)=2T(n-3*3)+1
T(n)=2*2*2T(n-3*3)+2*2+2+1
...
T(n)=(2^k)T(n-3*k)+2^(k-1)+...+2^2+2+1
n-3*k=0
k=n/3
===> 2^(n/3)+...+2^2+2+1=2^(n/3)[1+(1/2)+(1/2^2)+...]=2^(n/3)*constant
Thus I got O(2^(n/3))
For the space complexity: the tree depth is n/3 and each time we do malloc so we get (n/3)^2 thus O(n^2).
My question:
- why can we treat f1(f1(n – 3)) as f1(n-3)+f1(n-3) or as 2f1(n-3)?
- if the function didn't return n but changed it, for example: return n/3 instead of return n, then how do we solve it? do we treat it as 2f1((n-3)/3)?
- if we can't always treat f1(f1(n – 3)) as f1(n-3)+f1(n-3) or as 2f1(n-3) then how do we draw the recursion tree and how do we write and solve it using the induction method T(n)?