I need to find a square area using a latitude and longitude(x,y) as the following figure
I need to get all the other 3 corner latitude and longitude by adding 10kms to each side. I am using Node.js/javascript to implement this.
I need to find a square area using a latitude and longitude(x,y) as the following figure
I need to get all the other 3 corner latitude and longitude by adding 10kms to each side. I am using Node.js/javascript to implement this.
Referring to the below geometry diagram, the only co-ordinate you need to calculate is - (x2, y2)
and rest of the two co-ordinate you can calculate using current long, lat - (x1, y1)
and computed - (x2, y2)
So basically you need a function which will take current lat, long i.e. - (x1, y1)
, a distance which is √2 * 10km
in your example and bearing angle to point (x2, y2)
which at 135
degrees.
let llFromDistance = function(latitude, longitude, distance, bearing) {
// taken from: https://stackoverflow.com/a/46410871/13549
// distance in KM, bearing in degrees
const R = 6378.1; // Radius of the Earth
const brng = bearing * Math.PI / 180; // Convert bearing to radian
let lat = latitude * Math.PI / 180; // Current coords to radians
let lon = longitude * Math.PI / 180;
// Do the math magic
lat = Math.asin(Math.sin(lat) * Math.cos(distance / R) + Math.cos(lat) * Math.sin(distance / R) * Math.cos(brng));
lon += Math.atan2(Math.sin(brng) * Math.sin(distance / R) * Math.cos(lat), Math.cos(distance / R) - Math.sin(lat) * Math.sin(lat));
// Coords back to degrees and return
return [(lat * 180 / Math.PI), (lon * 180 / Math.PI)];
}
console.log(llFromDistance(19.0659115, 72.8574557, Math.sqrt(2)*10, 135))
Here's a function I've used - not sure of it's usefulness when close to the poles though
const fn = (latitude, longitude, distanceInKm, bearingInDegrees) => {
const R = 6378.1;
const dr = Math.PI / 180;
const bearing = bearingInDegrees * dr;
let lat = latitude * dr;
let lon = longitude * dr;
lat = Math.asin(Math.sin(lat) * Math.cos(distanceInKm / R) + Math.cos(lat) * Math.sin(distanceInKm / R) * Math.cos(bearing));
lon += Math.atan2(
Math.sin(bearing) * Math.sin(distanceInKm / R) * Math.cos(lat),
Math.cos(distanceInKm / R) - Math.sin(lat) * Math.sin(lat)
);
lat /= dr;
lon /= dr;
return {lat, lon};
}
so, the points would be
fn(y, x, 10, 90), // top right
fn(y, x, 10 * Math.sqrt(2), 135), // bottom right (Pythagoras rules!)
fn(y, x, 10, 180) // bottom left