I built a character-level LSTM model on text data, but ultimately I'm looking to apply this model on very long text documents (such as a novel) where it's important to understand contextual information, such as where in the novel it's in.
For these large-scale NLP tasks, is the data usually cut into smaller pieces and concatenated with metadata - such as position within the document, detected topic, etc. - to be fed into the model? Or are there more elegant techniques?