This is what I have:
ID PRICE VOLUME PRODUC FROM_DATE TO_DATE NUMDAYS
1 20.5 15.0 prod_1 2018-08-06 2018-08-13 7
2 15.6 10.0 prod_2 2018-08-06 2018-08-08 2
This is what I want to achieve:
ID PRICE VOLUME PRODUC FROM_DATE TO_DATE NUMDAYS
1 20.5 15.0 prod_1 2018-08-06 2018-08-07 1
1 20.5 15.0 prod_1 2018-08-07 2018-08-08 1
1 20.5 15.0 prod_1 2018-08-08 2018-08-09 1
1 20.5 15.0 prod_1 2018-08-09 2018-08-10 1
1 20.5 15.0 prod_1 2018-08-10 2018-08-11 1
1 20.5 15.0 prod_1 2018-08-11 2018-08-12 1
1 20.5 15.0 prod_1 2018-08-12 2018-08-13 1
2 15.6 10.0 prod_2 2018-08-06 2018-08-07 1
2 15.6 10.0 prod_2 2018-08-07 2018-08-08 1
So I have a Dataframe with information about products that affect different dates.
- Products may affect from 1 day to n days.
- The volume affects each date in between.
How could I do it?
I have tryed: - To do a for loop for each element of the dataframe but
df_results = pd.DataFrame(columns=df.columns)
for index, row in df.iterrows():
day = row.to_dict()
for i in range(0,int(row['numdays'])):
day['NUMDAYS'] = 1
day['FROM_DATE'] = row['FROM_DATE']+datetime.timedelta(days=i)
day['TO_DATE'] = day['FROM_DATE'] + datetime.timedelta(days=1)
df_aux = pd.DataFrame.from_dict(day)
df_results .append(df_aux)
However I can't make it work.