This is the rule, and you may not like it...
Quote from Eric Lippert
if any method on a more-derived class is an applicable candidate, it
is automatically better than any method on a less-derived class, even
if the less-derived method has a better signature match.
The reason is because the method (that is a better signature match) might have been added in a later version and thereby be introducing a "brittle base class" failure
Note : This is a fairly complicated/in-depth part of the C# specs and it jumps all over the place. However, the main parts of the issue you are experiencing are written as follows
Update
And this is why i like stackoverflow, It is such a great place to learn.
I was quoting the the section on the run time processing of the method call. Where as the question is about compile time overload resolution, and should be.
7.6.5.1 Method invocations
...
The set of candidate methods is reduced to contain only methods from
the most derived types: For each method C.F in the set, where C is the
type in which the method F is declared, all methods declared in a base
type of C are removed from the set. Furthermore, if C is a class type
other than object, all methods declared in an interface type are
removed from the set. (This latter rule only has affect when the
method group was the result of a member lookup on a type parameter
having an effective base class other than object and a non-empty
effective interface set.)
Please see Eric's post answer https://stackoverflow.com/a/52670391/1612975 for a full detail on whats going on here and the appropriate part of the specs
Original
C#
Language Specification
Version 5.0
7.5.5 Function member invocation
...
The run-time processing of a function member invocation consists of
the following steps, where M is the function member and, if M is an
instance member, E is the instance expression:
...
If M is an instance function member declared in a reference-type:
- E is evaluated. If this evaluation causes an exception, then no further steps are executed.
- The argument list is evaluated as described in §7.5.1.
- If the type of E is a value-type, a boxing conversion (§4.3.1) is performed to convert E to type object, and E is considered to be of
type object in the following steps. In this case, M could only be a
member of System.Object.
- The value of E is checked to be valid. If the value of E is null, a System.NullReferenceException is thrown and no further steps are
executed.
- The function member implementation to invoke is determined:
- If the binding-time type of E is an interface, the function member to invoke is the implementation of M provided by the run-time
type of the instance referenced by E. This function member is
determined by applying the interface mapping rules (§13.4.4) to
determine the implementation of M provided by the run-time type of the
instance referenced by E.
- Otherwise, if M is a virtual function member, the function member to invoke is the implementation of M provided by the run-time type of
the instance referenced by E. This function member is determined by
applying the rules for determining the most derived implementation
(§10.6.3) of M with respect to the run-time type of the instance
referenced by E.
- Otherwise, M is a non-virtual function member, and the function member to invoke is M itself.
After reading the specs what's interesting is, if you use an interface which describes the method, the compiler will choose the overload signature, in-turn working as expected
public interface ITest
{
void Foo(int x);
}
Which can be shown here
In regards to the interface, it does make sense when considering the overloading behavior was implemented to protect against Brittle base class
Additional Resources
Eric Lippert, Closer is better
The aspect of overload resolution in C# I want to talk about today is
really the fundamental rule by which one potential overload is judged
to be better than another for a given call site: closer is always
better than farther away. There are a number of ways to characterize
“closeness” in C#. Let’s start with the closest and move our way out:
- A method first declared in a derived class is closer than a method first declared in a base class.
- A method in a nested class is closer than a method in a containing class.
- Any method of the receiving type is closer than any extension method.
- An extension method found in a class in a nested namespace is closer than an extension method found in a class in an outer namespace.
- An extension method found in a class in the current namespace is closer than an extension method found in a class in a namespace
mentioned by a using directive.
- An extension method found in a class in a namespace mentioned in a using directive where the directive is in a nested namespace is closer
than an extension method found in a class in a namespace mentioned in
a using directive where the directive is in an outer namespace.