If you take a look at the model.summary()
output you will see that what the issue is:
Layer (type) Output Shape Param #
=================================================================
dense_13 (Dense) (None, 128, 50) 150
_________________________________________________________________
dense_14 (Dense) (None, 128, 20) 1020
_________________________________________________________________
dense_15 (Dense) (None, 128, 5) 105
_________________________________________________________________
dense_16 (Dense) (None, 128, 2) 12
=================================================================
Total params: 1,287
Trainable params: 1,287
Non-trainable params: 0
_________________________________________________________________
As you can see, the output of the model is (None, 128,2)
and not (None, 1, 2)
(or (None, 2)
) as you expected. So, you may or may not know that Dense layer is applied on the last axis of its input array and as a result, as you see above, the time axis and dimension is preserved until the end.
How to resolve this? You mentioned you don't want to use a RNN layer, therefore you have two options: you need to either use Flatten
layer somewhere in the model or you can also use some Conv1D + Pooling1D layers or even a GlobalPooling layer. For example (these are just for demonstration, you may do it differently):
using Flatten
layer
model = models.Sequential()
model.add(Dense(50, batch_input_shape=(None, 128, 2), kernel_initializer="he_normal" ,activation="relu"))
model.add(Dense(20, kernel_initializer="he_normal", activation="relu"))
model.add(Dense(5, kernel_initializer="he_normal", activation="relu"))
model.add(Flatten())
model.add(Dense(2))
model.summary()
Model summary:
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
dense_17 (Dense) (None, 128, 50) 150
_________________________________________________________________
dense_18 (Dense) (None, 128, 20) 1020
_________________________________________________________________
dense_19 (Dense) (None, 128, 5) 105
_________________________________________________________________
flatten_1 (Flatten) (None, 640) 0
_________________________________________________________________
dense_20 (Dense) (None, 2) 1282
=================================================================
Total params: 2,557
Trainable params: 2,557
Non-trainable params: 0
_________________________________________________________________
using GlobalAveragePooling1D
layer
model = models.Sequential()
model.add(Dense(50, batch_input_shape=(None, 128, 2), kernel_initializer="he_normal" ,activation="relu"))
model.add(Dense(20, kernel_initializer="he_normal", activation="relu"))
model.add(GlobalAveragePooling1D())
model.add(Dense(5, kernel_initializer="he_normal", activation="relu"))
model.add(Dense(2))
model.summary()
Model summary:
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
dense_21 (Dense) (None, 128, 50) 150
_________________________________________________________________
dense_22 (Dense) (None, 128, 20) 1020
_________________________________________________________________
global_average_pooling1d_2 ( (None, 20) 0
_________________________________________________________________
dense_23 (Dense) (None, 5) 105
_________________________________________________________________
dense_24 (Dense) (None, 2) 12
=================================================================
Total params: 1,287
Trainable params: 1,287
Non-trainable params: 0
_________________________________________________________________
Note that in both cases above you need to reshape the labels (i.e. targets) array to (n_samples, 2)
(or you may want to use a Reshape
layer at the end).