I have following dataframe:
df = pd.DataFrame([[1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3],['A','B','B','B','C','D','D','E','A','C','C','C','A','B','B','B','B','D','E'], [18,25,47,27,31,55,13,19,73,55,58,14,2,46,33,35,24,60,7]]).T
df.columns = ['Brand_ID','Category','Price']
Brand_ID Category Price
0 1 A 18
1 1 B 25
2 1 B 47
3 1 B 27
4 1 C 31
5 1 D 55
6 1 D 13
7 1 E 19
8 2 A 73
9 2 C 55
10 2 C 58
11 2 C 14
12 3 A 2
13 3 B 46
14 3 B 33
15 3 B 35
16 3 B 24
17 3 D 60
18 3 E 7
What I need to do is to group by Brand_ID and category and count (similar to the first part of this question). However, I need instead to write the output into a different column depending on the category. So my Output should look like follows:
Brand_ID Category_A Category_B Category_C Category_D Category_E
0 1 1 3 1 2 1
1 2 1 0 3 0 0
2 3 1 4 0 1 1
Is there any possibility to do this directly with pandas?