I have a question about my own project for testing reinforcement learning technique. First let me explain you the purpose. I have an agent which can take 4 actions during 8 steps. At the end of this eight steps, the agent can be in 5 possible victory states. The goal is to find the minimum cost. To access of this 5 victories (with different cost value: 50, 50, 0, 40, 60), the agent don't take the same path (like a graph). The blue states are the fail states (sorry for quality) and the episode is stopped.
The real good path is: DCCBBAD
Now my question, I don't understand why in SARSA & Q-Learning (mainly in Q learning), the agent find a path but not the optimal one after 100 000 iterations (always: DACBBAD/DACBBCD). Sometime when I compute again, the agent falls in the good path (DCCBBAD). So I would like to understand why sometime the agent find it and why sometime not. And there is a way to look at in order to stabilize my agent?
Thank you a lot,
Tanguy