Any time I try to get the cloud storage bucket object and input using a method shown on the support sites I get the error
google.api_core.exceptions.InvalidArgument: 400 The GCS object specified in gcs_content_uri does not exist.
The gcs reference looks like this when printed:
gs://lang-docs-in/b'doc1.txt'
I have tried everything to get this to work: encoding, decoding, etc for hours it seems but to no avail. Any thoughts?
main.py
import sys
from google.cloud import language
from google.cloud import storage
storage_client = storage.Client()
DOCUMENT_BUCKET = 'lang-docs-out'
def process_document(data, context):
# Get file attrs
bucket = storage_client.get_bucket(data['bucket'])
blob = bucket.get_blob(data['name'])
# send to NLP API
gcs_obj = 'gs://{}/{}'.format(bucket.name, blob.name.decode('utf-8'))
print('LOOK HERE')
print(gcs_obj)
parsed_doc = analyze_document(bucket, blob)
# Upload the resampled image to the other bucket
bucket = storage_client.get_bucket(DOCUMENT_BUCKET)
newblob = bucket.blob('parsed-' + data['name'])
newblob.upload_from_string(parsed_doc)
def analyze_document(bucket, blob):
language_client = language.LanguageServiceClient()
gcs_obj = 'gs://{}/{}'.format(bucket.name, blob.name.decode('utf-8'))
print(gcs_obj)
document = language.types.Document(gcs_content_uri=gcs_obj, language='en', type='PLAIN_TEXT')
response = language_client.analyze_syntax(document=document, encoding_type= get_native_encoding_type())
return response
def get_native_encoding_type():
"""Returns the encoding type that matches Python's native strings."""
if sys.maxunicode == 65535:
return 'UTF16'
else:
return 'UTF32'
requirements.txt
google-cloud-storage
google-cloud-language
google-api-python-client
grpcio
grpcio-tools