EDIT: If you just want to know if the child process stopped running, then the other answers are probably better. Mine is more to do with synchronizing when a process could do several computations, without necessarily terminating.
If you have some object representing the child computation, add a method such as bool isFinished()
which would return true if the child has finished. Have a private bool member in the object that represents whether the operation has finished. Finally, have another method private setFinished(bool)
on the same object that your child process calls when it finishes its computation.
Now the most important thing is mutex locks. Make sure you have a per-object mutex that you lock every time you try to access any members, including inside the bool isFinished()
and setFinished(bool)
methods.
EDIT2: (some OO clarifications)
Since I was asked to explain how this could be done with OO, I'll give a few suggestions, although it heavily depends on the overall problem, so take this with a mound of salt. Having most of the program written in C style, with one object floating around is inconsistent.
As a simple example you could have a class called ChildComputation
class ChildComputation {
public:
//constructor
ChildComputation(/*some params to differentiate each child's computation*/) :
// populate internal members here {
}
~ChildComputation();
public:
bool isFinished() {
m_isFinished; // no need to lock mutex here, since we are not modifying data
}
void doComputation() {
// put code here for your child to execute
this->setFinished(true);
}
private:
void setFinished(bool finished) {
m_mutex.lock();
m_isFinished = finished;
m_mutex.unlock();
}
private:
// class members
mutex m_mutexLock; // replace mutex with whatever mutex you are working with
bool m_isFinished;
// other stuff needed for computation
}
Now in your main program, where you fork:
ChildComputation* myChild = new ChildComputation(/*params*/);
ChildPID= fork();
if (ChildPID == 0) {
// will do the computation and automatically set its finish flag.
myChild->doComputation();
}
else {
while (1) { // your infinite loop in the parent
// ...
// check if child completed its computation
if (myChild->isFinished()) {
break;
}
}
// at the end, make sure the child is no runnning, and dispose of the object
// when you don't need it.
wait(ChildPID);
delete myChild;
}
Hope that makes sense.
To reiterate, what I have written above is an ugly amalgamation of C and C++ (not in terms of syntax, but style/design), and is just there to give you a glimpse of synchronization with OO, in your context.