I'm wondering if there is a different command than FullSimplify to tell mathematica to do the computation requested. Here's three variations of a simplification attempt
FullSimplify[Re[ (-I + k Rr)] Cos[Ttheta], Element[{k, Rr, Ttheta, t, omega}, Reals]]
FullSimplify[Re[E^(I (omega t - k Rr)) ] Cos[Ttheta], Element[{k, Rr, Ttheta, t, omega}, Reals]]
FullSimplify[Re[E^(I (omega t - k Rr)) (-I + k Rr)] Cos[Ttheta], Element[{k, Rr, Ttheta, t, omega}, Reals]]
I get respectively:
k Rr Cos[Ttheta]
Cos[k Rr - omega t] Cos[Ttheta]
I (-k Rr + omega t)
Cos[Ttheta] Re[E (-I + k Rr)]
Without the exponential, the real parts get evaluated. Without the complex factor multiplying the exponential, the real parts get evaluated. With both multiplied, the input is returned as output?
I tried the // Timings modifier, and this isn't because the expression is too complex (which is good since I can do this one in my head, but this was a subset of a larger test expression that was also failing).