Keeping this separate b/c it's long. You can also write a custom version of stat_smooth/StatSmooth
:
stat_smooth2 <- function(mapping = NULL, data = NULL,
geom = "smooth", position = "identity",
...,
method = "auto",
formula = y ~ x,
se = TRUE,
n = 80,
span = 0.75,
fullrange = FALSE,
level = 0.95,
method.args = list(),
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE) {
layer(
data = data,
mapping = mapping,
stat = StatSmooth2,
geom = geom,
position = position,
show.legend = show.legend,
inherit.aes = inherit.aes,
params = list(
method = method,
formula = formula,
se = se,
n = n,
fullrange = fullrange,
level = level,
na.rm = na.rm,
method.args = method.args,
span = span,
...
)
)
}
StatSmooth2 <- ggproto("StatSmooth", Stat,
setup_params = function(data, params) {
if (identical(params$method, "auto")) {
# Use loess for small datasets, gam with a cubic regression basis for
# larger. Based on size of the _largest_ group to avoid bad memory
# behaviour of loess
max_group <- max(table(interaction(data$group, data$PANEL, drop = TRUE)))
if (max_group < 1000) {
params$method <- "loess"
} else {
params$method <- "gam"
params$formula <- y ~ s(x, bs = "cs")
}
message("`geom_smooth()` using method = '", params$method,
"' and formula '", deparse(params$formula), "'")
}
if (identical(params$method, "gam")) {
params$method <- mgcv::gam
}
params
},
compute_group = function(data, scales, method = "auto", formula = y~x,
se = TRUE, n = 80, span = 0.75, fullrange = FALSE,
xseq = NULL, level = 0.95, method.args = list(),
na.rm = FALSE) {
if (length(unique(data$x)) < 2) {
# Not enough data to perform fit
return(data.frame())
}
if (is.null(data$weight)) data$weight <- 1
if (is.null(xseq)) {
if (is.integer(data$x)) {
if (fullrange) {
xseq <- scales$x$dimension()
} else {
xseq <- sort(unique(data$x))
}
} else {
if (fullrange) {
range <- scales$x$dimension()
} else {
range <- range(data$x, na.rm = TRUE)
}
xseq <- seq(range[1], range[2], length.out = n)
}
}
# Special case span because it's the most commonly used model argument
if (identical(method, "loess")) {
method.args$span <- span
}
if (is.character(method)) method <- match.fun(method)
base.args <- list(quote(formula), data = quote(data), weights = quote(weight))
model <- do.call(method, c(base.args, method.args))
se <- data$secol[1] != "I"
ggplot2:::predictdf(model, xseq, se, level)
},
required_aes = c("x", "y", "secol")
)
Then do what you want:
library(ggplot2)
ggplot(diamonds, aes(depth, price)) +
stat_smooth2(method="glm", formula=y~x,
alpha=0.2, size=1, aes(fill=cut, secol = color)) + # << NOTE secol
facet_grid(.~ color)
which gives:

This is prbly less "meh" & frustrating than hacking grobs for legends.