You need to do dir(systemml.mllearn) to see mllearn functions.
>>> dir(systemml.mllearn)
['Caffe2DML', 'Keras2DML', 'LinearRegression', 'LogisticRegression',
'NaiveBayes', 'SVM', '__all__', '__builtins__', '__doc__', '__file__',
'__name__', '__package__', '__path__', 'estimators']
Please install SystemML 1.2 from pypi.org. 1.2 is the latest release from Aug. 2018. Release 1.0 only had experimental support.
Can you please try to only import MLContext, just to see whether loading the main SystemML jar file works, and what version your installation uses?
>>> from systemml import MLContext
>>> ml = MLContext(sc)
Welcome to Apache SystemML!
Version 1.2.0
>>> print (ml.buildTime())
2018-08-17 05:58:31 UTC
>>> from sklearn import datasets, neighbors
>>> from systemml.mllearn import LogisticRegression
>>> y_digits = digits.target
>>> n_samples = len(X_digits)
>>> X_train = X_digits[:int(.9 * n_samples)]
>>> y_train = y_digits[:int(.9 * n_samples)]
>>> X_test = X_digits[int(.9 * n_samples):]
>>> y_test = y_digits[int(.9 * n_samples):]
>>>
>>> logistic = LogisticRegression(spark)
>>>
>>> print('LogisticRegression score: %f' % logistic.fit(X_train, y_train).score(X_test, y_test))
18/10/20 00:15:52 WARN BaseSystemMLEstimatorOrModel: SystemML local memory budget:5097 mb. Approximate free memory available on the driver JVM:416 mb.
18/10/20 00:15:52 WARN StatementBlock: WARNING: [line 81:0] -> maxinneriter -- Variable maxinneriter defined with different value type in if and else clause.
18/10/20 00:15:53 WARN SparkExecutionContext: Configuration parameter spark.driver.maxResultSize set to 1 GB. You can set it through Spark default configuration setting either to 0 (unlimited) or to available memory budget of size 4 GB.
BEGIN MULTINOMIAL LOGISTIC REGRESSION SCRIPT
...