Code
def nxt(rows, cols, row, col)
case row
when rows[:first]
col == cols[:last] ? [row+1, col] : [row, col+1]
when rows[:last]
col == cols[:first] ? [row-1, col] : [row, col-1]
else
col == cols[:last] ? [row+1, col] : [row-1, col]
end
end
def rotate_array_times(matrix, n)
arr = matrix.dup.map(&:dup)
nrows, ncols = arr.size, arr.first.size
0.upto([nrows, ncols].min/2-1) do |m|
rows = { first: m, last: nrows-m-1 }
cols = { first: m, last: ncols-m-1 }
rect_size = 2 * (nrows + ncols) - 8*m - 4
rotations = n % rect_size
row = col = rrow = rcol = m
rotations.times { rrow, rcol = nxt(rows, cols, rrow, rcol) }
rect_size.times do
arr[row][col] = matrix[rrow][rcol]
row, col = nxt(rows, cols, row, col)
rrow, rcol = nxt(rows, cols, rrow, rcol)
end
end
arr
end
Examples
matrix = [
[ 1, 2, 3, 4],
[ 5, 6, 7, 8],
[ 9, 10, 11, 12],
[13, 14, 15, 16]
]
(1..3).each { |n| p rotate_array_times(matrix, n) }
[[2, 3, 4, 8],
[1, 7, 11, 12],
[5, 6, 10, 16],
[9, 13, 14, 15]]
[[3, 4, 8, 12],
[2, 11, 10, 16],
[1, 7, 6, 15],
[5, 9, 13, 14]]
[[4, 8, 12, 16],
[3, 10, 6, 15],
[2, 11, 7, 14],
[1, 5, 9, 13]]
matrix = (1..24).each_slice(4).to_a
#=> [[ 1, 2, 3, 4],
# [ 5, 6, 7, 8],
# [ 9, 10, 11, 12],
# [13, 14, 15, 16],
# [17, 18, 19, 20],
# [21, 22, 23, 24]]
(1..3).each { |n| p rotate_array_times(matrix, n) }
#=> [[ 2, 3, 4, 8],
# [ 1, 7, 11, 12],
# [ 5, 6, 15, 16],
# [ 9, 10, 19, 20],
# [13, 14, 18, 24],
# [17, 21, 22, 23]]
# [[ 3, 4, 8, 12],
# [ 2, 11, 15, 16],
# [ 1, 7, 19, 20],
# [ 5, 6, 18, 24],
# [ 9, 10, 14, 23],
# [13, 17, 21, 22]]
# [[ 4, 8, 12, 16],
# [ 3, 15, 19, 20],
# [ 2, 11, 18, 24],
# [ 1, 7, 14, 23],
# [ 5, 6, 10, 22],
# [ 9, 13, 17, 21]]
matrix = (1..48).each_slice(8).to_a
#=> [[ 1, 2, 3, 4, 5, 6, 7, 8],
# [ 9, 10, 11, 12, 13, 14, 15, 16],
# [17, 18, 19, 20, 21, 22, 23, 24],
# [25, 26, 27, 28, 29, 30, 31, 32],
# [33, 34, 35, 36, 37, 38, 39, 40],
# [41, 42, 43, 44, 45, 46, 47, 48]]
(1..3).each { |n| p rotate_array_times(matrix, n) }
[[ 2, 3, 4, 5, 6, 7, 8, 16],
[ 1, 11, 12, 13, 14, 15, 23, 24],
[ 9, 10, 20, 21, 22, 30, 31, 32],
[17, 18, 19, 27, 28, 29, 39, 40],
[25, 26, 34, 35, 36, 37, 38, 48],
[33, 41, 42, 43, 44, 45, 46, 47]]
[[ 3, 4, 5, 6, 7, 8, 16, 24],
[ 2, 12, 13, 14, 15, 23, 31, 32],
[ 1, 11, 21, 22, 30, 29, 39, 40],
[ 9, 10, 20, 19, 27, 28, 38, 48],
[17, 18, 26, 34, 35, 36, 37, 47],
[25, 33, 41, 42, 43, 44, 45, 46]]
[[ 4, 5, 6, 7, 8, 16, 24, 32],
[ 3, 13, 14, 15, 23, 31, 39, 40],
[ 2, 12, 22, 30, 29, 28, 38, 48],
[ 1, 11, 21, 20, 19, 27, 37, 47],
[ 9, 10, 18, 26, 34, 35, 36, 46],
[17, 25, 33, 41, 42, 43, 44, 45]]
Explanation
nxt
Given row and column indices row
and col
, nxt(rows, cols, row, col)
returns the indices [next_row, next_col]
of the "next" element on the perimeter of a subarray that is to replace the element (also on the perimeter) at indices [row, col]
in a single iteration. The subarray is given by the hashes rows
and cols
which each have keys :first
and :last
.
Let's consider an an array arr
with 4 elements (rows), each element (row) having 6 values (columns). Then
nrows, ncols = arr.size, arr.first.size
#=> [4, 6]
If m = 0
rows = { first: m, last: nrows-m-1 }
#=> {:first=>0, :last=>3}
cols = { first: m, last: ncols-m-1 }
#=> {:first=>0, :last=>5}
It is seen that rows
and cols
describes the "perimeter" of he array matrix
. We can see how nxt
works as follows.
first_row, first_col = rows[:first], cols[:first]
row, col = first_row, first_col
print "[#{row}, #{col}]"
loop do
next_row, next_col = nxt(rows, cols, row, col)
print "->[#{next_row}, #{next_col}]"
row, col = next_row, next_col
(puts; break) if [row, col] == [first_row, first_col]
end
[0, 0]->[0, 1]->[0, 2]->[0, 3]->[0, 4]->[0, 5]->[1, 5]->[2, 5]->[3, 5]->
[3, 4]->[3, 3]->[3, 2]->[3, 1]->[3, 0]->[2, 0]->[1, 0]->[0, 0]
If m = 1
, the above calculation yields
[1, 1]->[1, 2]->[1, 3]->[1, 4]->[2, 4]->[2, 3]->[2, 2]->[2, 1]->[1, 1]
rotate_array_times
This method constructs a deep copy of matrix
, arrr
, whose elements are rotated in the prescribed matter n
times and then returns the resulting array.
To speed calculations, n
is replaced by a modulus of itself. For a 4x4 array, for example, after 12 iterations the perimeter of the array would be back to its original value. Therefore, it is sufficient to perform n % 12
rotations.
matrix
contains n = [matrix.size, matrix.first.size].min
subarrays whose perimeters are to be rotated. The top-left corner of each subarray is given by the coordinate [m,m]
, where m = 0..n-1
.
For the subarray specified by m
the first step is to determine the location of the element of matrix
that is to replace the element of arr
at [m,m]
. That is done in the line
rotations.times { rrow, rcol = nxt(rows, cols, rrow, rcol) }
("rrow"
and "rcol"
for "replacement row" and "replacement col", respectively). At this time the element of arr
at location row #=> m
, col #=> m
is to be replaced the element of matrix
at the location given by rrow
and rcol
. The following operations then performed as many times as there are elements in the perimeter of the subarray which are to be rotated:
arr[row][col] = matrix[rrow][rcol]
row, col = nxt(rows, cols, row, col)
rrow, rcol = nxt(rows, cols, rrow, rcol)
Tweaking efficiency
A modest improvement in efficiency could be achieved by replacing the line
rotations.times { rrow, rcol = nxt(rows, cols, rrow, rcol) }
with
rrow, rcol = first_replacement_loc(rows, cols, rotations)
and adding the following method.
def first_replacement_loc(rows, cols, rotations)
ncm1 = cols[:last]-cols[:first]
nrm1 = rows[:last]-rows[:first]
return [rows[:first], cols[:first]+rotations] if rotations <= ncm1
rotations -= ncm1
return [rows[:first]+rotations, cols[:last]] if rotations <= nrm1
rotations -= nrm1
return [rows[:last], cols[:last]-rotations] if rotations <= ncm1
rotations -= ncm1
[rows[:last]-rotations, cols[:first]]
end