I am trying to parse a date column in pyspark by replacing dd/mm/yyyy with yyyy-mm-dd.
import pyspark.sql.functions as F
spark = SparkSession.builders.appName('test').getOrCreate()
sc = spark.sparkContext
sqlc = pyspark.sql.SQLContext(sc)
df = sqlc.createDataFrame([('01/01/2018','user1'),('28/02/2017','user2')], ['Date','user'])
df.show()
+----------+-----+
| Date| user|
+----------+-----+
|01/01/2018|user1|
|28/02/2017|user2|
+----------+-----+
What I've done so far is:
df.select( F.concat_ws('-',F.split(F.col('Date'),'/')).alias('Date_parsed')).show()
+-----------+
|Date_parsed|
+-----------+
| 01-01-2018|
| 28-02-2017|
+-----------+
What I would like to obtain is:
+-----------+
|Date_parsed|
+-----------+
| 2018-01-01|
| 2017-02-28|
+-----------+
Any idea how to do this without using a udf?