How do I apply a function to many columns of grouped rows? For example;
library(tidyverse)
data <- tribble(
~Date, ~Seq1, ~Component, ~Seq2, ~X1, ~X2, ~X3,
"01/01/18", 1, "Smooth", NA, 3.98, 2.75, 1.82,
"01/01/18", 2, "Smooth", NA, 1.02, 0.02, -0.04,
"01/01/18", 3, "Smooth", NA, 3.48, 3.06, 1.25,
"01/01/18", 3, "Bounce", 1, 2.01, -0.43, -0.52,
"01/01/18", 3, "Bounce", 2, 1.94, 1.53, 1.92) %>%
mutate_at(vars(Date, Seq1, Component, Seq2), funs(factor))
Each column of X values (many more columns, truncated here for clarity) is grouped into Date, Seq1, Component, and Seq2. While Component "Smooth" and Seq1 "NA" are constant, within Component "Bounce" level there are multiple Seq2 levels e.g. "1", "2", etc.
How do I sum each X column, always the constant "NA" with each level of Seq2?
The desired results is:
expected <- tribble(
~Date, ~Seq1, ~Component, ~Seq2, ~X1, ~X2, ~X3,
"01/01/18", 1, "Smooth", NA, 3.98, 2.75, 1.82,
"01/01/18", 2, "Smooth", NA, 1.02, 0.02, -0.04,
"01/01/18", 3, "Smooth", NA, 3.48, 3.06, 1.25,
"01/01/18", 3, "Bounce", 1, 5.49, 3.49, 1.77,
"01/01/18", 3, "Bounce", 2, 5.42, 4.59, 3.17)
The following example only adds each Seq1 level.
data %>%
group_by(Date, Seq1) %>%
mutate_at(vars(starts_with("X")), funs(sum(.)))
#> # A tibble: 5 x 7
#> # Groups: Date, Seq1 [3]
#> Date Seq1 Component Seq2 X1 X2 X3
#> <fct> <fct> <fct> <fct> <dbl> <dbl> <dbl>
#> 1 01/01/18 1 Smooth <NA> 3.98 2.75 1.82
#> 2 01/01/18 2 Smooth <NA> 1.02 0.02 -0.04
#> 3 01/01/18 3 Smooth <NA> 7.43 4.16 2.65
#> 4 01/01/18 3 Bounce 1 7.43 4.16 2.65
#> 5 01/01/18 3 Bounce 2 7.43 4.16 2.65
I am certain there is solution within the purrr
or apply
function family, however, I have been unsuccessful (for days) in solving this example. The actual data has about 180 X columns, with hundreds of Date and Seq1 combinations, and multiple Seq2 levels.
A similar example could be Summing Multiple Groups of Columns, How to apply a function to a subset of columns in r?, or even perhaps https://github.com/jennybc/row-oriented-workflows.
Created on 2018-10-23 by the reprex package (v0.2.1)