Scikit documentation states that:
Method for initialization:
‘k-means++’ : selects initial cluster centers for k-mean clustering in a smart way to speed up convergence. See section Notes in k_init for more details.
If an ndarray is passed, it should be of shape (n_clusters, n_features) and gives the initial centers.
My data has 10 (predicted) clusters and 7 features. However, I would like to pass array of 10 by 6 shape, i.e. I want 6 dimensions of centroid of be predefined by me, but 7th dimension to be iterated freely using k-mean++.(In another word, I do not want to specify initial centroid, but rather control 6 dimension and only leave one dimension to vary for initial cluster)
I tried to pass 10x6 dimension, in hope it would work, but it just throw up the error.