Doing this in SQL is a bad idea, but it is possible with a recursive CTE. The solution below uses a recursive CTE with a result set that maintains the state of the solution as it goes. It queries one record for each source for each recursive iteration and updates the state with the results of certain calculations. Depending on the state in the result it will either advance the sequence, the target, or both.
This solution assumes the targets and headers are sequentially ordered. If the targets aren't sequentially ordered, you can use a CTE to add ROW_NUMBER() to targets. Also if you have more than 32767 steps in the solution it will fail as that is the max recursion that sql server supports. Steps should be at most tasks + targets.
One nice thing is that it will handle overflow across multiple targets. For example, if a task has an estimate it that will fill up multiple targets, then the next task will start at the next available bucket, not the assigned one. Go ahead and put some crazy numbers in there.
Finally, I didn't know how you were deriving overflow percentage, I don't know how you got the last row's result from your sample data. I doubt whatever the answer should be would be difficult to derive once the criteria is known.
/** Setup Test Data **/
DECLARE @Tasks TABLE ( Header VARCHAR(20), Estimate INT, TargetId INT );
DECLARE @Targets TABLE ( TargetId INT, Capacity INT );
INSERT INTO @Tasks VALUES
( 'Task 1', 80, 1 ), ( 'Task 2', 30, 1 ), ( 'Task 3', 40, 2 ), ( 'Task 4', 10, 2 );
INSERT INTO @Targets VALUES ( 1, 100 ), ( 2, 50 ), ( 3, 50 );
/** Solution **/
WITH Sequenced AS (
-- Added SequenceId for tasks as it feels janky to order by headers.
SELECT CAST(ROW_NUMBER() OVER (ORDER BY Header) AS INT) [SequenceId], tsk.*
FROM @Tasks tsk
)
, TargetsWithOverflow AS (
SELECT *
FROM @Targets
UNION
SELECT MAX(TargetId) + 1, 99999999 -- overflow target to store excess not handled by targets
FROM @Targets
)
, src AS (
-- intialize state
SELECT 0 [SequenceId], CAST('' AS varchar(20)) [Header], 0 [Estimate], 0 [CurrentTargetId]
, 0 [CurrentTargetFillLevel], 0 [SequenceRemainingEstimate], 0 [OverfillAmt]
UNION ALL
SELECT seq.SequenceId, seq.header, seq.Estimate, tgt.TargetId
, CASE WHEN [Excess] <= 0 THEN TrueFillLevel + TrueEstimate -- capacity meets estimate
ELSE tgt.Capacity -- there is excess estimate
END
, CASE WHEN [Excess] <= 0 THEN 0 -- task complete
ELSE [Excess] -- task is not complete still some of estimate is left
END
, CASE WHEN tgt.TargetId != seq.TargetId THEN
CASE WHEN [Excess] > 0 THEN [TrueEstimate] - [Excess] ELSE [TrueEstimate] END
ELSE 0
END
FROM src
INNER JOIN Sequenced seq ON
(src.SequenceRemainingEstimate = 0 AND seq.SequenceId = src.SequenceId + 1)
OR (src.SequenceRemainingEstimate > 0 AND seq.SequenceId = src.SequenceId)
INNER JOIN TargetsWithOverflow tgt ON
-- Part of target selection is based on if the sequence advanced.
-- If the sequence has advanced then get the target assigned to the sequence
-- Or use the current one if it is GTE to the assigned target.
-- Otherwise get the target after current target.
(tgt.TargetId = seq.TargetId AND tgt.TargetId > src.CurrentTargetId AND seq.SequenceId != src.SequenceId)
OR (tgt.TargetId = src.CurrentTargetId AND tgt.Capacity >= src.CurrentTargetFillLevel AND seq.SequenceId != src.SequenceId)
OR (tgt.TargetId = src.CurrentTargetId + 1 AND seq.SequenceId = src.SequenceId)
CROSS APPLY (
SELECT CASE WHEN tgt.TargetId != src.CurrentTargetId THEN 0 ELSE src.CurrentTargetFillLevel END [TrueFillLevel]
) forFillLevel
CROSS APPLY (
SELECT tgt.Capacity - [TrueFillLevel] [TrueCapacity]
) forCapacity
CROSS APPLY (
SELECT CASE WHEN src.SequenceRemainingEstimate > 0 THEN src.SequenceRemainingEstimate ELSE seq.Estimate END [TrueEstimate]
) forEstimate
CROSS APPLY (
SELECT TrueEstimate - TrueCapacity [Excess]
) forExcess
)
SELECT src.Header
, LEFT(STUFF((SELECT ',' + RTRIM(srcIn.CurrentTargetId)
FROM src srcIn
WHERE srcIn.Header = src.Header
ORDER BY srcIn.CurrentTargetId
FOR XML PATH(''), TYPE).value('.', 'varchar(max)'), 1, 1, ''), 500)
[Target]
, CASE WHEN SUM(OverfillAmt) > 0 THEN 'Yes' ELSE 'No' END [Overfill]
, SUM (OverfillAmt) / (1.0 * AVG(seq.Estimate)) [OverfillPct]
FROM src
INNER JOIN Sequenced seq ON seq.SequenceId = src.SequenceId
WHERE src.SequenceId != 0
GROUP BY src.Header
OPTION (MAXRECURSION 32767)
Output
Header Target Overfill OverfillPct
-------------------- ---------- -------- ----------------
Task 1 1 No 0.00000000000000
Task 2 1,2 Yes 0.33333333333333
Task 3 2 No 0.00000000000000
Task 4 2,3 Yes 1.00000000000000
I just re-read your question and realized that you intend to run this query within a Stored Procedure. If that's the case, you could use techniques from this method and adapt them in a solution that uses a cursor. I hate them, but I doubt it would work any worse than this solution, and wouldn't have the recursion limitation. You'd just store the results into a temp table or table variable and then return the result of the stored procedure from that.