I haven't played around with this, but my understanding from the docs is that for loads (unlike NT stores) nothing can bypass cache or override the strong ordering of memory types like the normal WB (write-back). And even NT stores evict already-cached data, so they can't break coherence for this or another core that has cached data for the line you're writing.
You can do weakly-ordered loads from WC (write-combining) memory regions (with prefetchnta or SSE4 movntdqa), but they're probably still coherent at the physical address level.
@MargaretBloom commented
IIRC Intel warns the developer about multiple mapping with different cache types, which may indeed be good in this case.
so maybe you could actually bypass cache coherence with multiple virtual mappings of the same physical page.
I don't know if it's possible to do non-coherent DMA with a PCI / PCIe device, but that might be your only hope for getting actual DRAM contents without going through cache.
Normally (always?) DMA on modern x86 systems is cache-coherent, which is good for performance. To maintain backwards compat with 386 and earlier CPUs without caches, the first x86 CPUs with caches had cache-coherent DMA, not introducing cache-control instructions until later generations, since existing OSes didn't use them. In modern systems, memory controllers are built-in to the CPU. So on Intel CPUs, the system agent can snoop L3 tags to see if a line is cached anywhere on-chip in parallel with sending the request to the memory controller. Or a Xeon can DMA right into L3 cache without data having to bounce through DRAM, good for high bandwidth NICs.
There's an INVD
instruction which invalidates all caches without doing write-back first, but I think that includes the shared L3 cache, and probably the private caches of all other cores. So you can't practically use it on a Linux system where other cores are potentially in the middle of doing stuff; you'd potentially corrupt kernel data structures by using it, as well as simulating power failure on a machine with NVDIMMs for the process you were interested in.
Maybe if you somehow offlined all the other CPU cores, and disabled interrupts on the one core that was still up
Then re-enable interrupts. Interrupt handlers could end up with some kernel data cached and some in memory, or get device drivers out of sync with hardware, if any interrupts are handled between the wbinvd
and the invd
.
Update: someone did actually attempt this: