Consider the following example of nonlinear optimization problem. The procedure is too slow to apply in simulation studies. For example, in case of my studies, it takes 2.5 hours for only one replication. How to speed up the process so that the processing time could also be optimized?
library(mvtnorm)
library(alabama)
n = 200
X <- matrix(0, nrow = n, ncol = 2)
X[,1:2] <- rmvnorm(n = n, mean = c(0,0), sigma = matrix(c(1,1,1,4),
ncol = 2))
x0 = matrix(c(X[1,1:2]), nrow = 1)
y0 = x0 - 0.5 * log(n) * (colMeans(X) - x0)
X = rbind(X, y0)
x01 = y0[1]
x02 = y0[2]
x1 = X[,1]
x2 = X[,2]
pInit = matrix(rep(0.1, n + 1), nrow = n + 1)
outopt = list(kkt2.check=FALSE, "trace" = FALSE)
f1 <- function(p) sum(sqrt(pmax(0, p)))/sqrt(n+1)
heq1 <- function(p) c(sum(x1 * p) - x01, sum(x2 * p) - x02, sum(p) - 1)
hin1 <- function(p) p - 1e-06
sol <- alabama::auglag(pInit, fn = function(p) -f1(p),
heq = heq1, hin = hin1,
control.outer = outopt)
-1 * sol$value