I think you can be sure and it is not implementation defined, although this statement requires some interpretations of the standard when it comes to systems that do not use two's complement for representing negative values.
First, let's state the things that are clear: unsigned integrals do not overflow but take on a modulo 2^nrOfBits-value (cf this online C++ standard draft):
6.7.1 Fundamental types
(7) Unsigned integers shall obey the laws of arithmetic modulo 2n
where n is the number of bits in the value representation of that
particular size of integer.
So it's just a matter of whether a negative value nv
is converted correctly into an unsigned integral bit pattern nv(conv)
such that x + nv(conv)
will always be the same as x - nv
. For the case of a system using two's complement, things are clear, since the two's complement is actually designed such that this arithmetic works immediately.
For systems using other representations of negative values, we'll have to read the standard carefully:
7.8 Integral conversions
(2) If the destination type is unsigned, the resulting value is the
least unsigned integer congruent to the source integer (modulo 2n
where n is the number of bits used to represent the unsigned type). [
Note: In a two’s complement representation, this conversion is
conceptual and there is no change in the bit pattern (if there is
notruncation). —endnote]
As the footnote explicitly says, that in a two's complement representation, there is no change in the bit pattern, we may assume that in systems other than 2s complement a real conversion will take place such that x + nv(conv) == x - nv
.
So due to 7.8 (2), I'd say that your assumption is valid.