Get the n
th number
Yes, there is a way - use multiple values:
(defun pell-numbers (n)
"Return the n-th Pell number, n-1 number is returned as the 2nd value.
See https://oeis.org/A000129, https://en.wikipedia.org/wiki/Pell_number"
(check-type n (integer 0))
(cond ((= n 0) (values 0 0))
((= n 1) (values 1 0))
(t (multiple-value-bind (prev prev-1) (pell-numbers (1- n))
(values (+ (* 2 prev) prev-1)
prev)))))
(pell-numbers 10)
==> 2378 ; 985
This is a standard trick for recursive sequences which depend on several previous values, such as the Fibonacci.
Performance
Note that your double recursion means that (pell-numbers n)
has exponential(!) performance (computation requires O(2^n)
time), while my single recursion is linear (i.e., O(n)
).
Moreover, Fibonacci numbers have a convenient property which allows a logarithmic recursive implementation, i.e., taking O(log(n))
time.
Get all the numbers up to n
in a list
If you need all numbers up to the n
th, you need a simple loop:
(defun pell-numbers-loop (n)
(loop repeat n
for cur = 1 then (+ (* 2 cur) prev)
and prev = 0 then cur
collect cur))
(pell-numbers-loop 10)
==> (1 2 5 12 29 70 169 408 985 2378)
If you insist on recursion:
(defun pell-numbers-recursive (n)
(labels ((pnr (n)
(cond ((= n 0) (list 0))
((= n 1) (list 1 0))
(t (let ((prev (pnr (1- n))))
(cons (+ (* 2 (first prev)) (second prev))
prev))))))
(nreverse (pnr n))))
(pell-numbers-recursive 10)
==> (0 1 2 5 12 29 70 169 408 985 2378)
Note that the recursion is non-tail, so the loop version is probably more efficient.
One can, of course, produce a tail recursive version:
(defun pell-numbers-tail (n)
(labels ((pnt (i prev)
(if (= i 0)
prev ; done
(pnt (1- i)
(cond ((null prev) (list 0)) ; n=0
((null (cdr prev)) (cons 1 prev)) ; n=1
(t
(cons (+ (* 2 (or (first prev) 1))
(or (second prev) 0))
prev)))))))
(nreverse (pnt (1+ n) ()))))
(pell-numbers-tail 10)
==> (0 1 2 5 12 29 70 169 408 985 2378)