I am trying to do the regression of NHL stats for predictors with variables goals, assists and points. However, our output is different than our desired output. Instead of the predictors we specified( goals, assists, and points) we get every instance of our instance of our intercept. See below:
urlname <- "https://www.hockey-reference.com/leagues/NHL_2018_skaters.html"
scraped_data <- read_html(urlname)
table.nhl <- html_nodes(scraped_data, "table")
scraped.nhl.data <- as.data.frame(html_table(table.nhl, header = TRUE))
colnames(scraped.nhl.data) = scraped.nhl.data[1, ] # the first row will be the header
scraped.nhl.data = scraped.nhl.data[-1, ] # removing the first row.
for (i in 1:nrow(scraped.nhl.data)){
if (scraped.nhl.data[i,1] == "Rk"){
scraped.nhl.data <- scraped.nhl.data[-i,]
}
}
pittsburgh <- scraped.nhl.data[scraped.nhl.data$Tm == "PIT", ]
pittsburgmodel <- pittsburgh[, c( "G", "A", "PTS")]
pittsburgmodel <- pittsburgmodel[complete.cases(pittsburgmodel), ]
View(pittsburgmodel)
names(pittsburgmodel) <- c(" goals", "assists", "points")
attach(pittsburgmodel)
fit = lm(games played ~., data = pittsburgmodel)
summary(fit)
Output
Coefficients: (18 not defined because of singularities)
Estimate Std. Error t value Pr(>|t|)
(Intercept) -3.719e-15 2.835e-15 -1.312e+00 0.247
assists1 2.000e+00 6.945e-15 2.880e+14 <2e-16 ***
assists10 4.000e+00 6.945e-15 5.759e+14 <2e-16 ***
assists12 1.800e+01 6.945e-15 2.592e+15 <2e-16 ***
assists13 5.000e+00 6.945e-15 7.199e+14 <2e-16 ***
assists2 4.000e+00 6.945e-15 5.759e+14 <2e-16 ***
assists20 2.900e+01 6.945e-15 4.175e+15 <2e-16 ***
assists21 1.100e+01 6.945e-15 1.584e+15 <2e-16 ***
assists22 7.000e+00 6.945e-15 1.008e+15 <2e-16 ***
assists23 4.000e+00 6.945e-15 5.759e+14 <2e-16 ***
assists25 1.300e+01 6.945e-15 1.872e+15 <2e-16 ***
assists26 2.200e+01 6.945e-15 3.168e+15 <2e-16 ***
assists3 2.000e+00 5.305e-15 3.770e+14 <2e-16 ***
assists4 4.000e+00 6.945e-15 5.759e+14 <2e-16 ***
assists42 9.000e+00 6.945e-15 1.296e+15 <2e-16 ***
assists5 3.000e+00 6.945e-15 4.319e+14 <2e-16 ***
assists56 4.200e+01 6.945e-15 6.047e+15 <2e-16 ***
assists58 3.400e+01 6.945e-15 4.895e+15 <2e-16 ***
assists6 2.000e+00 6.945e-15 2.880e+14 <2e-16 ***
assists60 2.900e+01 6.945e-15 4.175e+15 <2e-16 ***
assists8 4.000e+00 6.945e-15 5.759e+14 <2e-16 ***
points1 1.000e+00 6.945e-15 1.440e+14 <2e-16 ***
points10 2.000e+00 8.967e-15 2.231e+14 <2e-16 ***
points12 NA NA NA NA
points13 -1.000e+00 8.967e-15 -1.115e+14 <2e-16 ***
points14 NA NA NA NA
points18 NA NA NA NA
points27 NA NA NA NA
points29 NA NA NA NA
points3 NA NA NA NA
points30 NA NA NA NA
points31 -1.000e+00 8.967e-15 -1.115e+14 <2e-16 ***
points32 NA NA NA NA
points38 NA NA NA NA
points4 -2.000e+00 8.967e-15 -2.231e+14 <2e-16 ***
points48 NA NA NA NA
points49 NA NA NA NA
points5 NA NA NA NA
points51 NA NA NA NA
points6 NA NA NA NA
points8 NA NA NA NA
points89 NA NA NA NA
points92 NA NA NA NA
points98 NA NA NA NA
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 6.34e-15 on 5 degrees of freedom
Multiple R-squared: 1, Adjusted R-squared: 1
F-statistic: 3.72e+30 on 25 and 5 DF, p-value: < 2.2e-16
Desired output
Estimate Std. Error t value Pr(>|t|)
(Intercept) value value value value
Goals value value value value
Assists value value value value