I have DataFrame that looks like this
exec ms tp lu ru 0 exec1 16.0 240.87 2.30 0.85 1 exec1 16.0 243.72 2.35 0.84 2 exec1 16.0 234.16 2.38 0.92 3 exec1 16.0 244.71 2.35 0.84 4 exec1 16.0 240.74 2.39 0.90 5 exec1 128.0 1686.78 2.09 0.69 6 exec1 128.0 1704.36 2.00 0.44 7 exec1 128.0 1686.45 2.07 0.60 8 exec1 128.0 1722.61 2.07 0.45 9 exec1 128.0 1726.15 2.08 0.50 10 exec1 1024.0 5754.92 2.23 0.93 11 exec1 1024.0 5740.71 2.24 0.93 12 exec1 1024.0 5751.58 2.24 0.96 13 exec1 1024.0 5819.63 2.23 0.92 14 exec1 1024.0 5797.03 2.22 0.96 15 exec1 8192.0 37833.45 1.91 3.87 16 exec1 8192.0 38154.95 2.00 3.87 17 exec1 8192.0 38178.19 2.02 3.85 18 exec1 8192.0 38152.86 1.95 3.84 19 exec1 8192.0 35209.98 1.80 3.65 20 exec1 16384.0 38109.76 1.81 3.84 21 exec1 16384.0 38059.07 1.76 3.90 22 exec1 16384.0 36683.24 1.54 3.71 23 exec1 16384.0 37908.00 1.73 3.85 24 exec1 16384.0 37014.79 1.71 3.75
and I would like to make columns from ms for data from tp, lu and ru and have them as hierarchical columns and use exec as the index like this:
lu ru tp exec 16.0 128.0 1024.0 8192.0 16384.0 16.0 128.0 1024.0 8192.0 16384.0 16.0 128.0 1024.0 8192.0 16384.0 exec1 2.30 2.09 2.23 1.91 1.81 0.85 0.69 0.93 3.87 3.84 240.87 1686.78 5754.92 37833.45 38109.76 exec1 2.35 2.00 2.24 2.00 1.76 0.84 0.44 0.93 3.87 3.90 243.72 1704.36 5740.71 38154.95 38059.07 exec1 2.38 2.07 2.24 2.02 1.54 0.92 0.60 0.96 3.85 3.71 234.16 1686.45 5751.58 38178.19 36683.24 exec1 2.35 2.07 2.23 1.95 1.73 0.84 0.45 0.92 3.84 3.85 244.71 1722.61 5819.63 38152.86 37908.00 exec1 2.39 2.08 2.22 1.80 1.71 0.90 0.50 0.96 3.65 3.75 240.74 1726.15 5797.03 35209.98 37014.79
I tried using pd.pivot_table but it creates unwanted nans.