I'm trying to get a better understanding of recursion as well as functional programming, I thought a good practice example for that would be to create permutations of a string with recursion and modern methods like reduce, filter and map.
I found this beautiful piece of code
const flatten = xs =>
xs.reduce((cum, next) => [...cum, ...next], []);
const without = (xs, x) =>
xs.filter(y => y !== x);
const permutations = xs =>
flatten(xs.map(x =>
xs.length < 2
? [xs]
: permutations(without(xs, x)).map(perm => [x, ...perm])
));
permutations([1,2,3])
// [[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]]
from Permutations in JavaScript? by Márton Sári
I've delimited it a bit in order to add some console logs to debug it and understand what's it doing behind the scenes
const flatten = xs => {
console.log(`input for flatten(${xs})`);
return xs.reduce((cum, next) => {
let res = [...cum, ...next];
console.log(`output from flatten(): ${res}`);
return res;
}, []);
}
const without = (xs, x) => {
console.log(`input for without(${xs},${x})`)
let res = xs.filter(y => y !== x);
console.log(`output from without: ${res}`);
return res;
}
const permutations = xs => {
console.log(`input for permutations(${xs})`);
let res = flatten(xs.map(x => {
if (xs.length < 2) {
return [xs]
} else {
return permutations(without(xs, x)).map(perm => [x, ...perm])
}
}));
console.log(`output for permutations: ${res}`)
return res;
}
permutations([1,2,3])
I think I have a good enough idea of what each method iss doing, but I just can't seem to conceptualize how it all comes together to create [[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]]
can somebody show me step by step what's going on under the hood?