I changed the getting started example of Tensorflow as following:
import tensorflow as tf
from sklearn.metrics import roc_auc_score
import numpy as np
import commons as cm
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sn
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(512, activation=tf.nn.tanh),
# tf.keras.layers.Dense(512, activation=tf.nn.tanh),
# tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation=tf.nn.tanh)
])
model.compile(optimizer='adam',
loss='mean_squared_error',
# loss = 'sparse_categorical_crossentropy',
metrics=['accuracy'])
history = cm.Histories()
h= model.fit(x_train, y_train, epochs=50, callbacks=[history])
print("history:", history.losses)
cm.plot_history(h)
# cm.plot(history.losses, history.aucs)
test_predictions = model.predict(x_test)
# Compute confusion matrix
pred = np.argmax(test_predictions,axis=1)
pred2 = model.predict_classes(x_test)
confusion = confusion_matrix(y_test, pred)
cm.draw_confusion(confusion,range(10))
With its default parameters:
relu
activation at hidden layers,softmax
at the output layer andsparse_categorical_crossentropy
as loss function,
it works fine and the prediction for all digits are above 99%
However with my parameters: tanh
activation function and mean_squared_error
loss function it just predict 0
for all test samples:
I wonder what is the problem? The accuracy rate is increasing for each epoch and it reaches 99% and loss is about 20