I have two different data sets. One for training my classifier and the other one is for testing. Both the datasets are text files with two columns separated by a ",". FIrst column (numbers) is for the independent variable (group) and the second column is for the dependent variable.
Training data set
(just few lines for example. there are no empty lines between each row):
EMI3776438,1
EMI3776438,1
EMI3669492,1
EMI3752004,1
Testing data setup
(as you can see, i have picked data from the training data to be sure that the score surely can't be zero)
EMI3776438,1
Code in Python 3.6:
# #all the import statements have been ignored to keep the code short
# #loading the training data set
training_file_path=r'C:\Users\yyy\Desktop\my files\python\Machine learning\Carepack\modified_columns.txt'
from sklearn import preprocessing
le = preprocessing.LabelEncoder()
training_file_data = pandas.read_table(training_file_path,
header=None,
names=['numbers','group'],
sep=',')
training_file_data = training_file_data.apply(le.fit_transform)
features = ['numbers']
x = training_file_data[features]
y = training_file_data["group"]
from sklearn.model_selection import train_test_split
training_x,testing_x, training_y, testing_y = train_test_split(x, y,
random_state=0,
test_size=0.1)
from sklearn.naive_bayes import GaussianNB
gnb= GaussianNB()
gnb.fit(training_x, training_y)
# #loading the testing data
testing_final_path=r"C:\Users\yyy\Desktop\my files\python\Machine learning\Carepack\testing_final.txt"
testing_sample_data=pandas.read_table(testing_final_path,
sep=',',
header=None,
names=['numbers','group'])
testing_sample_data = testing_sample_data.apply(le.fit_transform)
category = ["numbers"]
testing_sample_data_x = testing_sample_data[category]
# #finding the score of the test data
print(gnb.score(testing_sample_data_x, testing_sample_data["group"]))