Let's first have a look at the signature of clCreateBuffer:
cl_mem clCreateBuffer(
cl_context context,
cl_mem_flags flags,
size_t size,
void *host_ptr,
cl_int *errcode_ret)
There is no argument here that would provide the OpenCL runtime with an exact device to whose memory the buffer shall be put, as a context can have multiple devices. The runtime only knows as soon as we use a buffer object, e.g. read/write from/to it, as those operations need a command queue that is connected to a specific device.
Every memory object an reside in either the host memory or one of the context's device's memories, and the runtime might migrate it as needed. So in general, every memory object, might have a piece of internal host memory within the OpenCL runtime. What the runtime actually does is implementation dependent, so we cannot not make too many assumptions and get no portable guarantees. That means everything about pinning etc. is implementation-dependent, and you can only hope for the best, but avoid patterns that will definitely prevent the use of pinned memory.
Why do we want pinned memory?
Pinned memory means, that the virtual address of our memory page in our process' address space has a fixed translation into a physical memory address of the RAM. This enables DMA (Direct Memory Access) transfers (which operate on physical addresses) between the device memory of a GPU and the CPU memory using PCIe. DMA lowers the CPU load and possibly increases copy speed. So we want the internal host storage of our OpenCL memory objects to be pinned, to increase the performance of data transfers between the internal host storage and the device memory of an OpenCL memory object.
As a basic rule of thumb: if your runtime allocates the host memory, it might be pinned. If you allocate it in your application code, the runtime will pessimistically assume it is not pinned - which usually is a correct assumption.
CL_MEM_USE_HOST_PTR
Allows us to provide memory to the OpenCL implementation for internal host-storage of the object. It does not mean that the memory object will not be migrated into device memory if we call a kernel. As that memory is user-provided, the runtime cannot assume it to be pinned. This might lead to an additional copy between the un-pinned internal host storage and a pinned buffer prior to device transfer, to enable DMA for host-device-transfers.
CL_MEM_ALLOC_HOST_PTR
We tell the runtime to allocate host memory for the object. It could be pinned.
CL_MEM_COPY_HOST_PTR
We provide host memory to copy-initialise our buffer from, not to use it internally. We can also combine it with CL_MEM_ALLOC_HOST_PTR
. The runtime will allocate memory for internal host storage. It could be pinned.
Hope that helps.