Note: I haven't read/seen this book.
For educational material; if the author describes reality accurately with all the details the reader will just get confused and won't be able to learn. To work around that, authors simplify (omit details and ignore reality) while introducing different concepts, so that the reader is able to learn each concept one at a time while building up the knowledge needed to comprehend the complexity of reality.
The problem is that different simplifications make sense at different stages, and authors are human (imperfect), so sometimes the simplifications that were beneficial at one point (in one chapter) conflict with simplifications that are beneficial at a later point (in a different chapter).
For an example, I might (initially) tell someone "each access from virtual memory involves a second memory fetch from RAM to determine the translation" to help them understand how page tables work and that there's (potential) performance problems involved (twice as many memory accesses). Then I might introduce the concept of "translation look-aside buffers" (after the reader understands the how page tables work and knows about the problem that TLBs are designed to solve). Then I might explain that often real systems have multiple levels of page tables (e.g. on 64-bit 80x86 it's four levels, potentially involving 4 memory accesses to determine a translation) and that there might be higher level caches/buffers involved (and not just TLBs that cache final translations). In this case, my original statement ("each access from virtual memory involves a second memory fetch from RAM to determine the translation") is a deliberate lie (a simplification) to avoid the complexity of a statement like "each access from virtual memory may or may not involve one or more additional fetches from some or all levels of page tables" (which is too confusing for beginners initially, because it creates lots of questions that they don't have answers to yet).
I cannot wrap my head around why the author suggests that, in case of no page fault, only one memory access will be needed.
One reality is (for one real 80x86 CPU in long mode but not all 80x86 CPUs in long mode and not any 80x86 in other modes, if virtualisation is not being used), for a read from virtual memory that does not lead to a page fault, if the access is not misaligned/split across page boundaries (where CPU would have to do it all twice to fetch bytes from 2 different pages and merge the bytes):
* if the translation is not in the TLB, then:
* if the area is not in the "page directory cache"
* fetch the PML4 entry to determine address of PDPT (try L1 cache, then L2 cache, then L3 cache, then RAM)
* do access checks based on flags in PML4 entry
* fetch the PDPT entry to determine address of PD (try L1 cache, then L2 cache, then L3 cache, then RAM)
* do access checks based on flags in PDPT entry
* insert data into "page directory cache"
* if the area is in the "page directory cache"
* do access checks based on flags in "page directory cache entry"
* fetch the PD entry to determine address of PT (try L1 cache, then L2 cache, then L3 cache, then RAM)
* do access checks based on flags in PD entry
* fetch the PT entry to determine address of page (try L1 cache, then L2 cache, then L3 cache, then RAM)
* do access checks based on flags in PT entry
* insert data into TLB (including setting the "accessed" flag in the page table entry)
* if the translation is in the TLB, then:
* do access checks based on flags in "TLB entry"
* do the "physical address = physical address of page + offset in page" calculation
* read the data for the physical address (try L1 cache, then L2 cache, then L3 cache, then RAM)
For this reality (with the restrictions mentioned); the number of fetches from RAM can be anything from zero to 5.
Can you see why the author (while trying to explain page faults and not trying to explain translation costs) might want to avoid showing something like this and might simplify (by assuming that only one fetch is needed because the translation is in the TLB) instead?