In [177]: >>> A = [[1, 1],
...: ... [1, 1]]
...: >>> B = [[2, 2],
...: ... [2, 2]]
...: >>> C = [[3, 3],
...: ... [3, 3]]
...: >>> results = sparse.block_diag([A, B, C])
...:
In [178]: results
Out[178]:
<6x6 sparse matrix of type '<class 'numpy.int64'>'
with 12 stored elements in COOrdinate format>
block_diag
does not preserve the inputs; rather it creates coo
format matrix, representing the whole matrix, not the pieces.
In [194]: results.data
Out[194]: array([1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3], dtype=int64)
In [195]: results.row
Out[195]: array([0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5], dtype=int32)
In [196]: results.col
Out[196]: array([0, 1, 0, 1, 2, 3, 2, 3, 4, 5, 4, 5], dtype=int32)
In [179]: results.A
Out[179]:
array([[1, 1, 0, 0, 0, 0],
[1, 1, 0, 0, 0, 0],
[0, 0, 2, 2, 0, 0],
[0, 0, 2, 2, 0, 0],
[0, 0, 0, 0, 3, 3],
[0, 0, 0, 0, 3, 3]], dtype=int64)
block_diag
pass the arrays to sparse.bmat
. That in turn makes a coo
matrix from each, and then merges the coo
attributes into 3 arrays, which are inputs to the global sparse matrix.
There is another sparse format bsr
that may preserve the blocks (until conversion to csr
for calculation), but I'll have to experiment to see that's the case.
Let's make a bsr
from that results
coo
:
In [186]: bresults = sparse.bsr_matrix(results)
In [187]: bresults
Out[187]:
<6x6 sparse matrix of type '<class 'numpy.int64'>'
with 12 stored elements (blocksize = 2x2) in Block Sparse Row format>
In [188]: bresults.blocksize
Out[188]: (2, 2)
In [189]: bresults.data
Out[189]:
array([[[1, 1],
[1, 1]],
[[2, 2],
[2, 2]],
[[3, 3],
[3, 3]]], dtype=int64)
So it deduces that there are blocks, just as you desired.
In [191]: bresults.indices
Out[191]: array([0, 1, 2], dtype=int32)
In [192]: bresults.indptr
Out[192]: array([0, 1, 2, 3], dtype=int32)
So it's a csr
like storage, but with the data
arranged in blocks.
It may be possible to construct this from your A,B,C
without the block_diag
intermediary, but I'd have to look at the docs more.