You can:
- Work on the sub-image defined by
cv::boundingRect
- create the mask where all points inside the rotated rect are white with
cv::fillConvexPoly
- logical AND with the original image
- count the number of white pixels with
cv::countNonZero
The method proposed by John Henkel works, but in my (very quick) tests it something between 10 and 40 times slower.
Below the code with both methods. You'll find small differences in the result, because the white pixels on the border of the rotated rect are handled differently.
#include <opencv2\opencv.hpp>
#include <chrono>
int main()
{
// Create binary image with random pixels b/W
cv::Mat1b img(5000, 5000);
cv::randu(img, cv::Scalar(0), cv::Scalar(256));
img = img > 127;
// Define a rotated rect
cv::Point2f center(2000, 2000);
cv::Size2f sz(1000, 500);
float angle = 30.f;
cv::RotatedRect rr(center, sz, angle);
// Get points
std::vector<cv::Point2f> points(4);
rr.points(points.data());
// Work on ROI
cv::Rect roi = rr.boundingRect();
// Area
float area = rr.size.width * rr.size.height;
//// DEBUG, Show rect
//cv::Mat3b out;
//cv::cvtColor(img, out, cv::COLOR_GRAY2BGR);
//for (int i = 0; i < 4; ++i) {
// cv::line(out, points[i], points[(i + 1) % 4], cv::Scalar(0, 0, 255));
//}
{
// --------------------
// Method @Miki
// --------------------
auto tic = std::chrono::high_resolution_clock::now();
cv::Mat1b sub_img = img(roi);
// Create rotated rect mask
cv::Mat1b mask(roi.size(), uchar(0));
std::vector<cv::Point> points_in_sub_image(4);
for (int i = 0; i < 4; ++i) {
points_in_sub_image[i] = cv::Point(points[i]) - roi.tl();
}
cv::fillConvexPoly(mask, points_in_sub_image, cv::Scalar(255));
// AND sub image with mask
cv::Mat1b inside_roi = sub_img & mask;
//// DEBUG, Draw green points
//for (int r = 0; r < sub_img.rows; ++r) {
// for (int c = 0; c < sub_img.cols; ++c) {
// if (inside_roi(r, c) > 0)
// {
// out(r + roi.y, c + roi.x) = cv::Vec3b(0, 255, 0);
// }
// }
//}
// Get actual count
int cnz = cv::countNonZero(inside_roi);
auto toc = std::chrono::high_resolution_clock::now();
auto elapsed = std::chrono::duration_cast<std::chrono::microseconds>(toc - tic);
float percent_white_pixels = cnz / area;
std::cout << "percent_white_pixels: " << percent_white_pixels << " in " << elapsed.count() << " us" << std::endl;
}
{
// --------------------
// Method @John Henkel
// --------------------
auto tic = std::chrono::high_resolution_clock::now();
int cnz = 0;
for (int y = roi.y; y < roi.y + roi.height; ++y) {
for (int x = roi.x; x < roi.x + roi.width; ++x) {
if (
(img(y, x) > 0) &&
(cv::pointPolygonTest(points, cv::Point2f(x, y), false) >= 0.0)
)
{
// DEBUG, Draw blue points
//out(y, x) = cv::Vec3b(255, 0, 0);
++cnz;
}
}
}
auto toc = std::chrono::high_resolution_clock::now();
auto elapsed = std::chrono::duration_cast<std::chrono::microseconds>(toc - tic);
float percent_white_pixels = cnz / area;
std::cout << "percent_white_pixels: " << percent_white_pixels << " in " << elapsed.count() << " us" << std::endl;
}
getchar();
return 0;
}