To obtain bounds on posterior estimates requires sampling the posterior, which pystan.StanModel.optimizing
does not do. Instead, use the pystan.StanModel.sampling
method to generate MCMC draws from the posterior.
If you just need readouts of standard confidence bounds, then the pystan.StanFit.stansummary()
method might be sufficient, as this will print the 2.5%, 25%, 50%, 75%, and 97.5% quantiles for each parameter. For example,
fit = sm.sampling(...) # eight schools model
print(fit.stansummary())
Inference for Stan model: anon_model_19a09b474d1901f191444eaf8a6b8ce2.
4 chains, each with iter=10000; warmup=5000; thin=1; post-warmup
draws per chain=5000, total post-warmup draws=20000.
mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
mu 7.98 0.05 5.04 -2.0 4.76 7.91 11.2 18.2 10614 1.0
tau 6.54 0.08 5.65 0.24 2.49 5.25 8.98 20.65 4552 1.0
eta[0] 0.39 6.7e-3 0.94 -1.53 -0.23 0.42 1.02 2.18 20000 1.0
eta[1] 3.3e-4 6.2e-3 0.88 -1.74 -0.58-2.5e-3 0.57 1.75 20000 1.0
eta[2] -0.2 6.6e-3 0.93 -2.01 -0.84 -0.22 0.41 1.68 20000 1.0
eta[3] -0.03 6.3e-3 0.89 -1.8 -0.61 -0.03 0.56 1.75 20000 1.0
eta[4] -0.35 6.7e-3 0.88 -2.04 -0.94 -0.36 0.22 1.44 17344 1.0
eta[5] -0.22 6.6e-3 0.9 -1.96 -0.81 -0.24 0.35 1.59 18298 1.0
eta[6] 0.34 6.8e-3 0.88 -1.43 -0.23 0.36 0.93 2.04 16644 1.0
eta[7] 0.05 6.6e-3 0.93 -1.77 -0.58 0.04 0.66 1.88 20000 1.0
theta[0] 11.4 0.07 8.23 -1.83 6.04 10.22 15.42 31.52 13699 1.0
theta[1] 7.93 0.04 6.21 -4.58 4.09 7.89 11.79 20.48 20000 1.0
theta[2] 6.17 0.06 7.72 -11.43 2.06 6.65 10.85 20.53 16367 1.0
theta[3] 7.72 0.05 6.53 -5.29 3.68 7.7 11.75 21.04 20000 1.0
theta[4] 5.14 0.04 6.35 -9.35 1.44 5.64 9.38 16.49 20000 1.0
theta[5] 6.11 0.05 6.66 -8.44 2.22 6.44 10.41 18.52 20000 1.0
theta[6] 10.63 0.05 6.76 -1.25 6.04 10.08 14.51 25.66 20000 1.0
theta[7] 8.4 0.06 7.85 -7.56 3.89 8.17 12.76 25.3 16584 1.0
lp__ -4.89 0.04 2.63 -10.79 -6.47 -4.66 -3.01 -0.43 5355 1.0
Or if you need specific quantiles, you would use numpy.percentile
as you mentioned.
However, as you correctly observe, this is inappropriate for multimodal distributions. This case is addressed in a different answer, but note that if one expects multiple modes a priori, a mixture model is typically used to separate the modes out into distinct unimodal random variables.