I want to convert my nested json format into pandas dataframe i have tried but my data is something looking like this which is not correct
I have tried to fetch the json and save inside the innings dictionary and tried to convert into the pandas which is not working in the proper format
innings is the dictionary which i am trying to convert into pandas dataframe but it is not converting in the proper format
this is my json something like this
{
'1164223': [
{
'ball_limit': '300',
'balls': '300',
'batted': '1',
'batting_team_id': '2591',
'bowling_team_id': '1832',
'bpo': '6',
'byes': '1',
'event': '0',
'event_name': None,
'extras': '11',
'innings_number': '1',
'innings_numth': '1st',
'lead': '308',
'legbyes': '4',
'live_current': '0',
'live_current_name': None,
'minutes': None,
'noballs': '0',
'old_penalty_or_bonus': '0',
'over_limit': '50.0',
'over_limit_run_rate': '6.16',
'over_split_limit': '0.0',
'overs': '50.0',
'overs_docked': '0',
'penalties': '0',
'penalties_field_end': '0',
'penalties_field_start': '0',
'run_rate': '6.16',
'runs': '308',
'target': '0',
'wickets': '6',
'wides': '6'
},
{
'ball_limit': '300',
'balls': '294',
'batted': '1',
'batting_team_id': '1832',
'bowling_team_id': '2591',
'bpo': '6',
'byes': '0',
'event': '0',
'event_name': None,
'extras': '10',
'innings_number': '2',
'innings_numth': '1st',
'lead': '3',
'legbyes': '1',
'live_current': '1',
'live_current_name': 'current innings',
'minutes': None,
'noballs': '1',
'old_penalty_or_bonus': '0',
'over_limit': '50.0',
'over_limit_run_rate': '6.22',
'over_split_limit': '0.0',
'overs': '49.0',
'overs_docked': '0',
'penalties': '0',
'penalties_field_end': '0',
'penalties_field_start': '0',
'run_rate': '6.34',
'runs': '311',
'target': '309',
'wickets': '6',
'wides': '8'
}
],
'1165045': [
{
'ball_limit': '300',
'balls': '271',
'batted': '1',
'batting_team_id': '1003',
'bowling_team_id': '2989',
'bpo': '6',
'byes': '0',
'event': '1',
'event_name': 'all out',
'extras': '10',
'innings_number': '1',
'innings_numth': '1st',
'lead': '169',
'legbyes': '4',
'live_current': '0',
'live_current_name': None,
'minutes': None,
'noballs': '1',
'old_penalty_or_bonus': '0',
'over_limit': '50.0',
'over_limit_run_rate': '3.38',
'over_split_limit': '0.0',
'overs': '45.1',
'overs_docked': '0',
'penalties': '0',
'penalties_field_end': '0',
'penalties_field_start': '0',
'run_rate': '3.74',
'runs': '169',
'target': '0',
'wickets': '10',
'wides': '5'
},
{
'ball_limit': '300',
'balls': '239',
'batted': '1',
'batting_team_id': '2989',
'bowling_team_id': '1003',
'bpo': '6',
'byes': '0',
'event': '3',
'event_name': 'target reached',
'extras': '12',
'innings_number': '2',
'innings_numth': '1st',
'lead': '1',
'legbyes': '6',
'live_current': '1',
'live_current_name': 'current innings',
'minutes': None,
'noballs': '0',
'old_penalty_or_bonus': '0',
'over_limit': '50.0',
'over_limit_run_rate': '3.40',
'over_split_limit': '0.0',
'overs': '39.5',
'overs_docked': '0',
'penalties': '0',
'penalties_field_end': '0',
'penalties_field_start': '0',
'run_rate': '4.26',
'runs': '170',
'target': '170',
'wickets': '3',
'wides': '6'
}
]
}