About scope issue: see Stephan's answer.
I also wanted to know if this code could be optimized
By use of std::vector
. OK, the following is only a fine option if you can use vectors outside as well – copying the raw arrays into vectors wouldn't be efficient either... But if you can, then you might like this variant:
template <typename T> // optional: you're more flexible if you make a template of...
void sumOfTwoArrays(std::vector<T> const& va, std::vector<T> const& vb, std::vector<T>& vr)
{
vr.resize(std::max(va.size(), vb.size() + 1));
int carry = 0; // renamed r to something more meaningful
// these pairs will help to avoid code duplication later
std::pair pa(va, va.rbegin());
std::pair pb(vb, vb.rbegin());
auto ir = vr.rbegin();
while(pa.second != pa.first.rend() && pb.second != pb.first.rend())
{
// just skip the if/else:
// assume you have arbitrary number, the else case will be entered anyway
// in 50 % of the cases - in the other 50 %, the else branch calculates
// the correct result, too; and on most modern machines, the branch is
// rather expensive, so you result in easier code and have quite a good
// chance to even perform better...
carry += *pa.second + *pb.second;
*ir = carry % 10;
carry /= 10;
++ir, ++pa.second, ++pb.second;
}
// avoiding of two identical while loops: iterate over the two pairs...
for(auto p : { pa, pb })
{
// just loop over, if we are already at the end, won't enter...
while(p.second != p.first.rend())
{
// STILL need to continue calculating the carry!
// imagine we have set it and ciphers following are all 9!
carry += *p.second;
*ir = carry % 10;
carry /= 10;
++ir, ++p.second;
}
}
// assign either 0 or 1...
*ir = carry;
}
Variant: instead of assigning 0, you could erase first element at the very end:
if(carry == 0)
{
vr.erase(vr.begin());
}
else
{
*ir = carry;
}
Note that this will move all the elements one position to front. On the other hand, if you repeatedly add vectors already containing a leading zero, you might prepend another one again and again without need, if you don't drop it again.
You wouldn't experience any of these issues if you inverted the order of digits in the vector, having least significant one at position 0 (you'd exchange rbegin()
and rend()
with begin()
and end()
, but would use the former for printing data to display...). Erasure at the end would be an O(1)
operation then:
if(carry == 0)
{
vr.erase(std::previous(vr.end())
}
// ...
All this above will only work as expected if you keep your vectors normalised (i. e. all digits in between 0 and 9 inclusive). You might consider packing the vector into a separate class such that the data is hidden away from the user and only can be modified in controlled manner (assume you have a fine vector, but a user does v[7] = -1012
...).