My question is based on this thread, where we group values of a pandas dataframe and select the latest (by date) from each group:
id product date
0 220 6647 2014-09-01
1 220 6647 2014-09-03
2 220 6647 2014-10-16
3 826 3380 2014-11-11
4 826 3380 2014-12-09
5 826 3380 2015-05-19
6 901 4555 2014-09-01
7 901 4555 2014-10-05
8 901 4555 2014-11-01
using the following
df.loc[df.groupby('id').date.idxmax()]
Say, however, that I want to include the condition that I only want to select the latest (by date) from each group within +/- 5 days. I.e., after grouping I want to find the latest within the following groups:
0 220 6647 2014-09-01 #because only these two are within +/- 5 days of each other
1 220 6647 2014-09-03
2 220 6647 2014-10-16 #spaced more than 5 days apart the above two records
3 826 3380 2014-11-11
.....
which yields
id product date
1 220 6647 2014-09-03
2 220 6647 2014-10-16
3 826 3380 2014-11-11
4 826 3380 2014-12-09
5 826 3380 2015-05-19
5 826 3380 2015-05-19
6 901 4555 2014-09-01
7 901 4555 2014-10-05
8 901 4555 2014-11-01
Dataset with price:
id product date price
0 220 6647 2014-09-01 100 #group 1
1 220 6647 2014-09-03 120 #group 1 --> pick this
2 220 6647 2014-09-05 0 #group 1
3 826 3380 2014-11-11 150 #group 2 --> pick this
4 826 3380 2014-12-09 23 #group 3 --> pick this
5 826 3380 2015-05-12 88 #group 4 --> pick this
6 901 4555 2015-05-15 32 #group 4
7 901 4555 2015-10-05 542 #group 5 --> pick this
8 901 4555 2015-11-01 98 #group 6 --> pick this