Alright. I know that we can limit the number of cores used by a Keras (TF backend) model by using the following method:
K.set_session(K.tf.Session(config=K.tf.ConfigProto(intra_op_parallelism_threads=2, inter_op_parallelism_threads=2, device_count = {'CPU': 2})))
And we can specify individual tensor operations like this:
with tf.device('/cpu:0'):
a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
But what if we want to specify a list of individual CPUs to be used by the Keras model?